ترغب بنشر مسار تعليمي؟ اضغط هنا

Control of focusing forces and emittances in plasma-based accelerators using near-hollow plasma channels

397   0   0.0 ( 0 )
 نشر من قبل Carl Schroeder
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A near-hollow plasma channel, where the plasma density in the channel is much less than the plasma density in the walls, is proposed to provide independent control over the focusing and accelerating forces in a plasma accelerator. In this geometry the low density in the channel contributes to the focusing forces, while the accelerating fields are determined by the high density in the channel walls. The channel also provides guiding for intense laser pulses used for wakefield excitation. In certain regimes, both electron and positron beams can be accelerated and focused in a nearly symmetric fashion. Near-hollow plasma channels can effectively mitigate emittance growth due to Coulomb scattering for high-energy physics applications.



قيم البحث

اقرأ أيضاً

Narrow bandwidth, high energy photon sources can be generated by Thomson scattering of laser light from energetic electrons, and detailed control of the interaction is needed to produce high quality sources. We present analytic calculations of the en ergy-angular spectra and photon yield that parametrize the influences of the electron and laser beam parameters to allow source design. These calculations, combined with numerical simulations, are applied to evaluate sources using conventional scattering in vacuum and methods for improving the source via laser waveguides or plasma channels. We show that the photon flux can be greatly increased by using a plasma channel to guide the laser during the interaction. Conversely, we show that to produce a given number of photons, the required laser energy can be reduced by an order of magnitude through the use of a plasma channel. In addition, we show that a plasma can be used as a compact beam dump, in which the electron beam is decelerated in a short distance, thereby greatly reducing radiation shielding. Realistic experimental errors such as transverse jitter are quantitatively shown to be tolerable. Examples of designs for sources capable of performing nuclear resonance fluorescence and photofission are provided.
Hollow plasma channels are attractive for lepton acceleration because they provide intrinsic emittance preservation regimes. However, beam breakup instabilities dominate the dynamics. Here, we show that thin, warm hollow channels can sustain large-am plitude plasma waves ready for high-quality positron acceleration. We verify that the combination of warm electrons and thin hollow channel enables positron focusing structures. Such focusing wakefields unlock beam breakup damping mechanisms. We demonstrate that such channels emerge self-consistently during the long-term plasma dynamics in the blowouts regime aftermath, allowing for experimental demonstration.
The dynamic process of a laser or particle beam propagating from vacuum into underdense plasma has been investigated theoretically. Our theoretical model combines a Lagrangian fluid model with the classic quasistatic wakefield theory. It is found tha t background electrons can be injected into wakefields because sharp vacuum-plasma transitions can reduce the injection threshold. The injection condition, injection threshold as well as the injection length can be given theoretically by our model and are compared with results from computer simulations. Moreover, electron beams of high qualities can be produced near the injection thresholds and the proposed scheme is promising in reducing the injection threshold and improving the beam qualities of plasma based accelerators.
75 - Sergey N. Galyamin 2021
Wakefield particle acceleration in hollow plasma channels is under extensive study nowadays. Here we consider an externally magnetized plasma layer (external magnetic field of arbitrary magnitude is along the structure axis) and investigate wakefield s generated by a point charge passing along the layer axis.
138 - B. Hidding , O. Karger , G. Wittig 2014
Synchronized, independently tunable and focused $mu$J-class laser pulses are used to release multiple electron populations via photo-ionization inside an electron-beam driven plasma wave. By varying the laser foci in the laboratory frame and the posi tion of the underdense photocathodes in the co-moving frame, the delays between the produced bunches and their energies are adjusted. The resulting multibunches have ultra-high quality and brightness, allowing for hitherto impossible bunch configurations such as spatially overlapping bunch populations with strictly separated energies, which opens up a new regime for light sources such as free-electron-lasers.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا