ﻻ يوجد ملخص باللغة العربية
We prove a Hochschild-Kostant-Rosenberg decomposition theorem for smooth proper schemes $X$ in characteristic $p$ when $dim Xleq p$. The best known previous result of this kind, due to Yekutieli, required $dim X<p$. Yekutielis result follows from the observation that the denominators appearing in the classical proof of HKR do not divide $p$ when $dim X<p$. Our extension to $dim X=p$ requires a homological fact: the Hochschild homology of a smooth proper scheme is self-dual.
We give counterexamples to the degeneration of the HKR spectral sequence in characteristic $p$, both in the untwisted and twisted settings. We also prove that the de Rham--$mathrm{HP}$ and crystalline--$mathrm{TP}$ spectral sequences need not degenerate.
We study the cup product on the Hochschild cohomology of the stack quotient [X/G] of a smooth quasi-projective variety X by a finite group G. More specifically, we construct a G-equivariant sheaf of graded algebras on X whose G-invariant global secti
Beliakova-Putyra-Wehrli studied various kinds of traces, in relation to annular Khovanov homology. In particular, to a graded algebra and a graded bimodule over it, they associate a quantum Hochschild homology of the algebra with coefficients in the
Let $C$ be an irreducible, reduced, non-degenerate curve, of arithmetic genus $g$ and degree $d$, in the projective space $mathbf P^4$ over the complex field. Assume that $C$ satisfies the following {it flag condition of type $(s,t)$}: {$C$ does not
We generalize the basic results of Vinbergs theta-groups, or periodically graded reductive Lie algebras, to fields of good positive characteristic. To this end we clarify the relationship between the little Weyl group and the (standard) Weyl group. W