ترغب بنشر مسار تعليمي؟ اضغط هنا

A remark on the genus of curves in $mathbf P^4$

137   0   0.0 ( 0 )
 نشر من قبل Vincenzo Di Gennaro
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Let $C$ be an irreducible, reduced, non-degenerate curve, of arithmetic genus $g$ and degree $d$, in the projective space $mathbf P^4$ over the complex field. Assume that $C$ satisfies the following {it flag condition of type $(s,t)$}: {$C$ does not lie on any surface of degree $<s$, and on any hypersurface of degree $<t$}. Improving previous results, in the present paper we exhibit a Castelnuovo-Halphen type bound for $g$, under the assumption $sleq t^2-t$ and $dgg t$. In the range $t^2-2t+3leq sleq t^2-t$, $dgg t$, we are able to give some information on the extremal curves. They are arithmetically Cohen-Macaulay curves, and lie on a flag like $Ssubset F$, where $S$ is a surface of degree $s$, $F$ a hypersurface of degree $t$, $S$ is unique, and its general hyperplane section is a space extremal curve, not contained in any surface of degree $<t$. In the case $dequiv 0$ (modulo $s$), they are exactly the complete intersections of a surface $S$ as above, with a hypersurface. As a consequence of previous results, we get a bound for the speciality index of a curve satisfying a flag condition.



قيم البحث

اقرأ أيضاً

In this paper we construct infinitely many Shimura curves contained in the locus of Jacobians of genus four curves. All Jacobians in these families are ${mathbb Z}/3$ covers of varying elliptic curves that appear in a geometric construction of Pirola , and include an example of a Shimura-Teichmuller curve that parameterizes Jacobians that are suitable ${mathbb Z}/6$ covers of ${mathbb P}^1$. We compute explicitly the period matrices of the Shimura curves we construct using the original construction of Shimura for moduli spaces of abelian varieties with automorphisms.
We prove a Hochschild-Kostant-Rosenberg decomposition theorem for smooth proper schemes $X$ in characteristic $p$ when $dim Xleq p$. The best known previous result of this kind, due to Yekutieli, required $dim X<p$. Yekutielis result follows from the observation that the denominators appearing in the classical proof of HKR do not divide $p$ when $dim X<p$. Our extension to $dim X=p$ requires a homological fact: the Hochschild homology of a smooth proper scheme is self-dual.
484 - Rebecca Tramel 2014
We bound the genus of a projective curve lying on a complete intersection surface in terms of its degree and the degrees of the defining equations of the surface on which it lies.
108 - Jinsong Xu 2019
We improve a result of Prokhorov and Shramov on the rank of finite $p$-subgroups of the birational automorphism group of a rationally connected variety. Known examples show that they are sharp in many cases.
204 - Daniele Agostini 2020
The Prym map assigns to each covering of curves a polarized abelian variety. In the case of unramified cyclic covers of curves of genus two, we show that the Prym map is ramified precisely on the locus of bielliptic covers. The key observation is tha t we can naturally associate to such a cover an abelian surface with a cyclic polarization, and then the codifferential of the Prym map can be interpreted in terms of multiplication of sections on the abelian surface. Furthermore, we prove that a genus two cyclic cover of degree at least seven is never hyperelliptic.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا