ﻻ يوجد ملخص باللغة العربية
Let $C$ be an irreducible, reduced, non-degenerate curve, of arithmetic genus $g$ and degree $d$, in the projective space $mathbf P^4$ over the complex field. Assume that $C$ satisfies the following {it flag condition of type $(s,t)$}: {$C$ does not lie on any surface of degree $<s$, and on any hypersurface of degree $<t$}. Improving previous results, in the present paper we exhibit a Castelnuovo-Halphen type bound for $g$, under the assumption $sleq t^2-t$ and $dgg t$. In the range $t^2-2t+3leq sleq t^2-t$, $dgg t$, we are able to give some information on the extremal curves. They are arithmetically Cohen-Macaulay curves, and lie on a flag like $Ssubset F$, where $S$ is a surface of degree $s$, $F$ a hypersurface of degree $t$, $S$ is unique, and its general hyperplane section is a space extremal curve, not contained in any surface of degree $<t$. In the case $dequiv 0$ (modulo $s$), they are exactly the complete intersections of a surface $S$ as above, with a hypersurface. As a consequence of previous results, we get a bound for the speciality index of a curve satisfying a flag condition.
In this paper we construct infinitely many Shimura curves contained in the locus of Jacobians of genus four curves. All Jacobians in these families are ${mathbb Z}/3$ covers of varying elliptic curves that appear in a geometric construction of Pirola
We prove a Hochschild-Kostant-Rosenberg decomposition theorem for smooth proper schemes $X$ in characteristic $p$ when $dim Xleq p$. The best known previous result of this kind, due to Yekutieli, required $dim X<p$. Yekutielis result follows from the
We bound the genus of a projective curve lying on a complete intersection surface in terms of its degree and the degrees of the defining equations of the surface on which it lies.
We improve a result of Prokhorov and Shramov on the rank of finite $p$-subgroups of the birational automorphism group of a rationally connected variety. Known examples show that they are sharp in many cases.
The Prym map assigns to each covering of curves a polarized abelian variety. In the case of unramified cyclic covers of curves of genus two, we show that the Prym map is ramified precisely on the locus of bielliptic covers. The key observation is tha