ترغب بنشر مسار تعليمي؟ اضغط هنا

A remark on quantum Hochschild homology

89   0   0.0 ( 0 )
 نشر من قبل Robert Lipshitz
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English
 تأليف Robert Lipshitz




اسأل ChatGPT حول البحث

Beliakova-Putyra-Wehrli studied various kinds of traces, in relation to annular Khovanov homology. In particular, to a graded algebra and a graded bimodule over it, they associate a quantum Hochschild homology of the algebra with coefficients in the bimodule, and use this to obtain a deformation of the annular Khovanov homology of a link. A spectral refinement of the resulting invariant was recently given by Akhmechet-Krushkal-Willis. In this short note we observe that quantum Hochschild homology is a composition of two familiar operations, and give a short proof that it gives an invariant of annular links, in some generality. Much of this is implicit in Beliakova-Putyra-Wehrlis work.



قيم البحث

اقرأ أيضاً

321 - Travis Schedler 2016
We determine the Z-module structure of the preprojective algebra and its zeroth Hochschild homology, for any non-Dynkin quiver (and hence the structure working over any base commutative ring, of any characteristic). This answers (and generalizes) a c onjecture of Hesselholt and Rains, producing new $p$-torsion classes in degrees 2p^l, l >= 1, We relate these classes by p-th power maps and interpret them in terms of the kernel of Verschiebung maps from noncommutative Witt theory. An important tool is a generalization of the Diamond Lemma to modules over commutative rings, which we give in the appendix. In the previous version, additional results are included, such as: the Poisson center of $text{Sym } HH_0(Pi)$ for all quivers, the BV algebra structure on Hochschild cohomology, including how the Lie algebra structure $HH_0(Pi_Q)$ naturally arises from it, and the cyclic homology groups of $Pi_Q$.
We prove that the Khovanov-Lee complex of an oriented link, L, in a thickened annulus, A x I, has the structure of a bifiltered complex whose filtered chain homotopy type is an invariant of the isotopy class of L in A x I. Using ideas of Ozsvath-Stip sicz-Szabo as reinterpreted by Livingston, we use this structure to define a family of annular Rasmussen invariants that yield information about annular and non-annular cobordisms. Focusing on the special case of annular links obtained as braid closures, we use the behavior of the annular Rasmussen invariants to obtain a necessary condition for braid quasipositivity and a sufficient condition for right-veeringness.
134 - J. Elisenda Grigsby , Yi Ni 2013
We show that the sutured Khovanov homology of a balanced tangle in the product sutured manifold D x I has rank 1 if and only if the tangle is isotopic to a braid.
Let L be a link in a thickened annulus. We show that its sutured annular Khovanov homology carries an action of the exterior current algebra of the Lie algebra sl_2. When L is an m-framed n-cable of a knot K in the three-sphere, its sutured annular K hovanov homology carries a commuting action of the symmetric group S_n. One therefore obtains a knotted Schur-Weyl representation that agrees with classical sl_2 Schur-Weyl duality when K is the Seifert-framed unknot.
We give a generators-and-relations description of differential graded algebras recently introduced by Ozsvath and Szabo for the computation of knot Floer homology. We also compute the homology of these algebras and determine when they are formal.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا