ﻻ يوجد ملخص باللغة العربية
La0.9Ba0.1MnO3 is a ferromagnetic insulator in its bulk form, but exhibits metallicity in thin film form. It has a wide potential in a range of spintronic-related applications, and hence it is critical to understand thickness-dependent electronic structure in thin films as well as substrate/film interface effects. Here, using electrical and in-situ photoemission spectroscopy measurements, we report the electronic structure and interface band profile of high-quality layer-by-layer-grown La0.9Ba0.1MnO3 on single crystal Nb:SrTiO3 substrates. A transition from insulating-to-conducting was observed with increasing La0.9Ba0.1MnO3 thickness, which was explained by the determined interface band diagram of La0.9Ba0.1MnO3/Nb: SrTiO3, where a type II heterojunction was formed.
SrRuO3 (SRO), a conducting transition metal oxide, is commonly used for engineering domains in BiFeO3. New oxide devices can be envisioned by integrating SRO with an oxide semiconductor as Nb doped SrTiO3 (Nb:STO). Using a three-terminal device confi
We show that the growth of the heterostructure LaGaO3/SrTiO3 yields the formation of a highly conductive interface. Our samples were carefully analyzed by high resolution electron microscopy, in order to assess their crystal perfection and to evaluat
Hot electron transport of direct and scattered carriers across an epitaxial NiSi_2/n-Si(111) interface, for different NiSi_2 thickness, is studied using Ballistic Electron Emission Microscopy (BEEM). We find the BEEM transmission for the scattered ho
Localization of electrons in the two-dimensional electron gas at the LaAlO$_3$/SrTiO$_3$ interface is investigated by varying the channel thickness in order to establish the nature of the conducting channel. Layers of SrTiO$_3$ were grown on NdGaO$_3
We derive the theory of the quantum (zero temperature) superconductor to metal transition in disordered materials when the resistance of the normal metal near criticality is small compared to the quantum of resistivity. This can occur most readily in