ﻻ يوجد ملخص باللغة العربية
Localization of electrons in the two-dimensional electron gas at the LaAlO$_3$/SrTiO$_3$ interface is investigated by varying the channel thickness in order to establish the nature of the conducting channel. Layers of SrTiO$_3$ were grown on NdGaO$_3$ (110) substrates and capped with LaAlO$_3$. When the SrTiO$_3$ thickness is $leq 6$ unit cells, most electrons at the interface are localized, but when the number of SrTiO$_3$ layers is 8-16, the free carrier density approaches $3.3 times 10^{14}$ cm$^{-2}$, the value corresponding to charge transfer of 0.5 electron per unit cell at the interface. The number of delocalized electrons decreases again when the SrTiO$_3$ thickness is $geq 20$ unit cells. The $sim{4}$ nm conducting channel is therefore located significantly below the interface. The results are explained in terms of Anderson localization and the position of the mobility edge with respect to the Fermi level.
The conducting gas that forms at the interface between LaAlO$_3$ and SrTiO$_3$ has proven to be a fertile playground for a wide variety of physical phenomena. The bulk of previous research has focused on the (001) and (110) crystal orientations. Here
The 2-dimensional electron system at the interface between LaAlO$_{3}$ and SrTiO$_{3}$ has several unique properties that can be tuned by an externally applied gate voltage. In this work, we show that this gate-tunability extends to the effective ban
The paradigm of electrons interacting with a periodic lattice potential is central to solid-state physics. Semiconductor heterostructures and ultracold neutral atomic lattices capture many of the essential properties of 1D electronic systems. However
We investigated the electronic structure of the SrTiO$_3$/LaAlO$_3$ superlattice (SL) by resonant soft x-ray scattering. The (003) peak, which is forbidden for our ideal SL structure, was observed at all photon energies, indicating reconstruction at
Low dimensionality, broken symmetry and easily-modulated carrier concentrations provoke novel electronic phase emergence at oxide interfaces. However, the spatial extent of such reconstructions - i.e. the interfacial depth - remains unclear. Examinin