ﻻ يوجد ملخص باللغة العربية
In the present paper we develop an approach to obtain sharp spectral asymptotics for Steklov type problems on planar domains with corners. Our main focus is on the two-dimensional sloshing problem, which is a mixed Steklov-Neumann boundary value problem describing small vertical oscillations of an ideal fluid in a container or in a canal with a uniform cross-section. We prove a two-term asymptotic formula for sloshing eigenvalues. In particular, this confirms a conjecture posed by Fox and Kuttler in 1983. We also obtain similar eigenvalue asymptotics for other related mixed Steklov type problems, and discuss applications to the study of Steklov spectral asymptotics on polygons.
We obtain asymptotic formulae for the Steklov eigenvalues and eigenfunctions of curvilinear polygons in terms of their side lengths and angles. These formulae are quite precise: the errors tend to zero as the spectral parameter tends to infinity. The
In this paper, we study the bounds for discrete Steklov eigenvalues on trees via geometric quantities. For a finite tree, we prove sharp upper bounds for the first nonzero Steklov eigenvalue by the reciprocal of the size of the boundary and the diame
We prove that the isoperimetric inequality due to Hersch-Payne-Schiffer for the n-th nonzero Steklov eigenvalue of a bounded simply-connected planar domain is sharp for all n=1,2,... The equality is attained in the limit by a sequence of simply-conne
We study the eigenvalues of the Laplacian with a strong attractive Robin boundary condition in curvilinear polygons. It was known from previous works that the asymptotics of several first eigenvalues is essentially determined by the corner openings,
We show the asymptotic behavior of the eigenvalues of the non-linear integral system related to the (p,q)-Laplacian.