ﻻ يوجد ملخص باللغة العربية
We study the eigenvalues of the Laplacian with a strong attractive Robin boundary condition in curvilinear polygons. It was known from previous works that the asymptotics of several first eigenvalues is essentially determined by the corner openings, while only rough estimates were available for the next eigenvalues. Under some geometric assumptions, we go beyond the critical eigenvalue number and give a precise asymptotics of any individual eigenvalue by establishing a link with an effective Schrodinger-type operator on the boundary of the domain with boundary conditions at the corners.
We study Schroedinger operators with Robin boundary conditions on exterior domains in $R^d$. We prove sharp point-wise estimates for the associated semi-groups which show, in particular, how the boundary conditions affect the time decay of the heat k
We discuss several geometric conditions guaranteeing the finiteness or the infiniteness of the discrete spectrum for Robin Laplacians on conical domains.
Let $Omegasubsetmathbb{R}^N$, $Nge 2,$ be a bounded domain with an outward power-like peak which is assumed not too sharp in a suitable sense. We consider the Laplacian $umapsto -Delta u$ in $Omega$ with the Robin boundary condition $partial_n u=alph
This note aims to give prominence to some new results on the absence and localization of eigenvalues for the Dirac and Klein-Gordon operators, starting from known resolvent estimates already established in the literature combined with the renowned Birman-Schwinger principle.
In this paper the spectral and scattering properties of a family of self-adjoint Dirac operators in $L^2(Omega; mathbb{C}^4)$, where $Omega subset mathbb{R}^3$ is either a bounded or an unbounded domain with a compact $C^2$-smooth boundary, are studi