ﻻ يوجد ملخص باللغة العربية
We obtain asymptotic formulae for the Steklov eigenvalues and eigenfunctions of curvilinear polygons in terms of their side lengths and angles. These formulae are quite precise: the errors tend to zero as the spectral parameter tends to infinity. The Steklov problem on planar domains with corners is closely linked to the classical sloshing and sloping beach problems in hydrodynamics; as we show it is also related to quantum graphs. Somewhat surprisingly, the arithmetic properties of the angles of a curvilinear polygon have a significant effect on the boundary behaviour of the Steklov eigenfunctions. Our proofs are based on an explicit construction of quasimodes. We use a variety of methods, including ideas from spectral geometry, layer potential analysis, and some new techniques tailored to our problem.
In the present paper we develop an approach to obtain sharp spectral asymptotics for Steklov type problems on planar domains with corners. Our main focus is on the two-dimensional sloshing problem, which is a mixed Steklov-Neumann boundary value prob
This paper studies the inverse Steklov spectral problem for curvilinear polygons. For generic curvilinear polygons with angles less than $pi$, we prove that the asymptotics of Steklov eigenvalues obtained in arXiv:1908.06455 determines, in a construc
In this paper, we study the bounds for discrete Steklov eigenvalues on trees via geometric quantities. For a finite tree, we prove sharp upper bounds for the first nonzero Steklov eigenvalue by the reciprocal of the size of the boundary and the diame
We prove that the isoperimetric inequality due to Hersch-Payne-Schiffer for the n-th nonzero Steklov eigenvalue of a bounded simply-connected planar domain is sharp for all n=1,2,... The equality is attained in the limit by a sequence of simply-conne
We introduce the Steklov flows on finite trees, i.e. the flows (or currents) associated with the Steklov problem. By constructing appropriate Steklov flows, we prove the monotonicity of the first nonzero Steklov eigenvalues on trees: for finite trees