ﻻ يوجد ملخص باللغة العربية
We prove an $epsilon$-regularity theorem for vector-valued p-harmonic maps, which are critical with respect to a partially free boundary condition, namely that they map the boundary into a round sphere. This does not seem to follow from the reflection method that Scheven used for harmonic maps with free boundary (i.e., the case $p=2$): the reflected equation can be interpreted as a $p$-harmonic map equation into a manifold, but the regularity theory for such equations is only known for round targets. Instead, we follow the spirit of the last-named authors recent work on free boundary harmonic maps and choose a good frame directly at the free boundary. This leads to growth estimates, which, in the critical regime $p=n$, imply Holder regularity of solutions. In the supercritical regime, $p < n$, we combine the growth estimate with the geometric reflection argument: the reflected equation is super-critical, but, under the assumption of growth estimates, solutions are regular. In the case $p<n$, for stationary $p$-harmonic maps with free boundary, as a consequence of a monotonicity formula we obtain partial regularity up to the boundary away from a set of $(n-p)$-dimensional Hausdorff measure.
We prove full boundary regularity for minimizing biharmonic maps with smooth Dirichlet boundary conditions. Our result, similarly as in the case of harmonic maps, is based on the nonexistence of nonconstant boundary tangent maps. With the help of rec
In this paper we study the following parabolic system begin{equation*} Delta u -partial_t u =|u|^{q-1}u,chi_{{ |u|>0 }}, qquad u = (u^1, cdots , u^m) , end{equation*} with free boundary $partial {|u | >0}$. For $0leq q<1$, we prove optimal
This article addresses the regularity issue for stationary or minimizing fractional harmonic maps into spheres of order $sin(0,1)$ in arbitrary dimensions. It is shown that such fractional harmonic maps are $C^infty$ away from a small closed singular
We study the regularity of the free boundary in the obstacle for the $p$-Laplacian, $minbigl{-Delta_p u,,u-varphibigr}=0$ in $Omegasubsetmathbb R^n$. Here, $Delta_p u=textrm{div}bigl(| abla u|^{p-2} abla ubigr)$, and $pin(1,2)cup(2,infty)$. Near th
In this paper, we will study the partial regularity theorem for stationary harmonic maps from a Riemannian manifold into a Lorentzian manifold. For a weakly stationary harmonic map $(u,v)$ from a smooth bounded open domain $OmegasubsetR^m$ to a Loren