ﻻ يوجد ملخص باللغة العربية
In this paper we study the following parabolic system begin{equation*} Delta u -partial_t u =|u|^{q-1}u,chi_{{ |u|>0 }}, qquad u = (u^1, cdots , u^m) , end{equation*} with free boundary $partial {|u | >0}$. For $0leq q<1$, we prove optimal growth rate for solutions $u $ to the above system near free boundary points, and show that in a uniform neighbourhood of any a priori well-behaved free boundary point the free boundary is $C^{1, alpha}$ in space directions and half-Lipschitz in the time direction.
The parabolic obstacle problem for the fractional Laplacian naturally arises in American option models when the assets prices are driven by pure jump Levy processes. In this paper we study the regularity of the free boundary. Our main result establis
We obtain the maximal regularity for the mixed Dirichlet-conormal problem in cylindrical domains with time-dependent separations, which is the first of its kind. The boundary of the domain is assumed to be Reifenberg-flat and the separation is locall
We investigate the regularity of the free boundary for the Signorini problem in $mathbb{R}^{n+1}$. It is known that regular points are $(n-1)$-dimensional and $C^infty$. However, even for $C^infty$ obstacles $varphi$, the set of non-regular (or degen
We prove an $epsilon$-regularity theorem for vector-valued p-harmonic maps, which are critical with respect to a partially free boundary condition, namely that they map the boundary into a round sphere. This does not seem to follow from the reflect
We prove a higher regularity result for the free boundary in the obstacle problem for the fractional Laplacian via a higher order boundary Harnack inequality.