ﻻ يوجد ملخص باللغة العربية
We prove full boundary regularity for minimizing biharmonic maps with smooth Dirichlet boundary conditions. Our result, similarly as in the case of harmonic maps, is based on the nonexistence of nonconstant boundary tangent maps. With the help of recently derivated boundary monotonicity formula for minimizing biharmonic maps by Altuntas we prove compactness at the boundary following Schevens interior argument. Then we combine those results with the conditional partial boundary regularity result for stationary biharmonic maps by Gong--Lamm--Wang.
We prove an $epsilon$-regularity theorem for vector-valued p-harmonic maps, which are critical with respect to a partially free boundary condition, namely that they map the boundary into a round sphere. This does not seem to follow from the reflect
This article addresses the regularity issue for stationary or minimizing fractional harmonic maps into spheres of order $sin(0,1)$ in arbitrary dimensions. It is shown that such fractional harmonic maps are $C^infty$ away from a small closed singular
In this article, we improve the partial regularity theory for minimizing $1/2$-harmonic maps in the case where the target manifold is the $(m-1)$-dimensional sphere. For $mgeq 3$, we show that minimizing $1/2$-harmonic maps are smooth in dimension 2,
In this paper we are concerned with a two-penalty boundary obstacle problem of interest in thermics, fluid dynamics and electricity. Specifically, we prove existence, uniqueness and optimal regularity of the solutions, and we establish structural properties of the free boundary.
We consider a pseudo-differential equation driven by the fractional $p$-Laplacian with $pge 2$ (degenerate case), with a bounded reaction $f$ and Dirichlet type conditions in a smooth domain $Omega$. By means of barriers, a nonlocal superposition pri