ﻻ يوجد ملخص باللغة العربية
A low background double-wall piston-cylinder-type pressure cell is developed at the Paul Scherrer Institute. The cell is made from BERLYCO-25 (beryllium copper) and MP35N nonmagnetic alloys with the design and dimensions which are specifically adapted to muon-spin rotation/relaxation (muSR) measurements. The mechanical design and performance of the pressure cell are evaluated using finite-element analysis (FEA). By including the measured stress-strain characteristics of the material into the finite-element model, the cell dimensions are optimized with the aim to reach the highest possible pressure while maintaining the sample space large (6 mm in diameter and 12 mm high). The presented unconventional design of the double-wall piston-cylinder pressure cell with a harder outer MP35N sleeve and asofter inner CuBe cylinder enables pressures of up to 2.6 GPa to be reached at ambient temperatures, corresponding to 2.2 GPa at low temperatures without any irreversible damage to the pressure cell. The nature of the muon stopping distribution, mainly in the sample and in the CuBe cylinder, results in a low-background muSR signal.
We present a piezoelectric-driven uniaxial pressure cell that is optimized for muon spin relaxation and neutron scattering experiments, and that is operable over a wide temperature range including cryogenic temperatures. To accommodate the large samp
We report measurements of the temperature- and pressure-dependent resistance, $R(T,p)$, of a manganin manometer in a $^4$He-gas pressure setup from room temperature down to the solidification temperature of $^4$He ($T_textrm {solid}sim$ 50 K at 0.8 G
The time dependence of muon spin relaxation has been measured in high purity aluminum and silver samples in a longitudinal 2 T magnetic field at room temperature, using time-differential musr. For times greater than 10 ns, the shape fits well to a si
This paper reports an investigation on the phase diagram and compressibility of wolframite-type tungstates by means of x-ray powder diffraction and absorption in a diamond-anvil cell and ab initio calculations. The diffraction experiments show that m
We report a detailed $mu$SR study of the pressure evolution of the magnetic order in the manganese based pnictide MnP, which has been recently found to undergo a superconducting transition under pressure once the magnetic ground state is suppressed.