ﻻ يوجد ملخص باللغة العربية
We report measurements of the temperature- and pressure-dependent resistance, $R(T,p)$, of a manganin manometer in a $^4$He-gas pressure setup from room temperature down to the solidification temperature of $^4$He ($T_textrm {solid}sim$ 50 K at 0.8 GPa) for pressures, $p$, between 0 GPa and $sim$0.8 GPa. The same manganin wire manometer was also measured in a piston-cylinder cell from 300 K down to 1.8 K and for pressures between 0 GPa to $sim$2 GPa. From these data, we infer the temperature and pressure dependence of the pressure coefficient of manganin, $alpha(T,p)$, defined by the equation $R_p = (1+alpha p) R_0$ where $R_0$ and $R_p$ are the resistance of manganin at ambient pressure and finite pressure, respectively. Our results indicate that upon cooling $alpha$ first decreases, then goes through a broad minimum at $sim$120 K and increases again towards lower temperatures. In addition, we find that $alpha$ is almost pressure-independent for $Tgtrsim$60 K up to $psim$2 GPa, but shows a pronounced $p$ dependence for $Tlesssim$60K. Using this manganin manometer, we demonstrate that $p$ overall decreases with decreasing temperature in the piston-cylinder cell for the full pressure range and that the size of the pressure difference between room temperature and low temperatures ($T=1.8$ K), $Delta p$, decreases with increasing pressure. We also compare the pressure values inferred from the magnanin manometer with the low-temperature pressure, determined from the superconducting transition temperature of elemental lead (Pb). As a result of these data and analysis we propose a practical algorithm to infer the evolution of pressure with temperature in a piston-cylinder cell.
Pressure calibration for most diamond-anvil cell (DAC) experiments is mainly based on the ruby scale, which is key to implement this powerful tool for high-pressure study. However, the ruby scale can often hardly be used for programmably-controlled D
A low background double-wall piston-cylinder-type pressure cell is developed at the Paul Scherrer Institute. The cell is made from BERLYCO-25 (beryllium copper) and MP35N nonmagnetic alloys with the design and dimensions which are specifically adapte
The structural stability and physical properties of CrVO4 under compression were studied by X-ray diffraction, Raman spectroscopy, optical absorption, resistivity measurements, and ab initio calculations up to 10 GPa. High-pressure X-ray diffraction
We extend the nested sampling algorithm to simulate materials under periodic boundary and constant pressure conditions, and show how it can be used to determine the complete equilibrium phase diagram, for a given potential energy function, efficientl
The complexity of strongly correlated electron physics in vanadium dioxide is exemplified as its rich phase diagrams of all kinds, which in turn shed light on the mechanisms behind its various phase transitions. In this work, we map out the hydrostat