ترغب بنشر مسار تعليمي؟ اضغط هنا

High-pressure phase transitions and compressibility of wolframite-type tungstates

160   0   0.0 ( 0 )
 نشر من قبل Daniel Errandonea
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper reports an investigation on the phase diagram and compressibility of wolframite-type tungstates by means of x-ray powder diffraction and absorption in a diamond-anvil cell and ab initio calculations. The diffraction experiments show that monoclinic wolframite-type MgWO4 suffers at least two phase transitions, the first one being to a triclinic polymorph with a structure similar to that of CuWO4 and FeMoO4-II. The onset of each transition is detected at 17.1 and 31 GPa. In ZnWO4 the onset of the monoclinic-triclinic transition has been also found at 15.1 GPa. These findings are supported by density-functional theory calculations, which predict the occurrence of additional transitions upon further compression. Calculations have been also performed for wolframite-type MnWO4, which is found to have an antiferromagnetic configuration. In addition, x-ray absorption and diffraction experiments as well as calculations reveal details of the local-atomic compression in the studied compounds. In particular, below the transition pressure the ZnO6 and equivalent polyhedra tend to become more regular, whereas the WO6 octahedra remain almost unchanged. Fitting the pressure-volume data we obtained the equation of state for the low-pressure phase of MgWO4 and ZnWO4. These and previous results on MnWO4 and CdWO4 are compared with the calculations, being the compressibility of wolframite-type tungstates systematically discussed. Finally Raman spectroscopy measurements and lattice dynamics calculations are presented for MgWO4.



قيم البحث

اقرأ أيضاً

Nuclear resonant inelastic x-ray scattering on quartz structured 57FePO4 as a function of pressure, up to 8 GPa reveals hardening of the low-energy phonons under applied pressures up to 1.5 GPa, followed by a large softening at 1.8 GPa upon approachi ng the phase transition pressure of ~2 GPa. The pressure-induced phase transitions in quartz-structured compounds have been predicted to be related to a soft phonon mode at the Brillouin-zone boundary (1/3, 1/3, 0) and to the break-down of the Born-stability criteria. Our results provide the first experimental evidence of this predicted phonon softening.
The Kitaev model of spin-1/2 on a honeycomb lattice supports degenerate topological ground states and may be useful in topological quantum computation. Na$_{2}$IrO$_{3}$ with honeycomb lattice of Ir ions have been extensively studied as candidates fo r the realization of the this model, due to the effective $J_{text{eff}}=1/2$ low-energy excitations produced by spin-orbit and crystal-field effect. As the eventual realization of Kitaev model has remained evasive, it is highly desirable and challenging to tune the candidate materials toward such end. It is well known external pressure often leads to dramatic changes to the geometric and electronic structure of materials. In this work, the high pressure phase diagram of Na$_{2}$IrO$_{3}$ is examined by first-principles calculations. It is found that Na$_{2}$IrO$_{3}$ undergoes a sequence of structural and magnetic phase transitions, from the magnetically ordered phase with space group $C2/m$ to two bond-ordered non-magnetic phases. The low-energy excitations in these high-pressure phases can be well described by the $J_{text{eff}}=1/2$ states.
There has been a major controversy over the past seven years about the high-pressure melting curves of transition metals. Static compression (diamond-anvil cell: DAC) experiments up to the Mbar region give very low melting slopes dT_m/dP, but shock-w ave (SW) data reveal transitions indicating much larger dT_m/dP values. Ab initio calculations support the correctness of the shock data. In a very recent letter, Belonoshko et al. propose a simple and elegant resolution of this conflict for molybdenum. Using ab initio calculations based on density functional theory (DFT), they show that the high-P/high-T phase diagram of Mo must be more complex than was hitherto thought. Their calculations give convincing evidence that there is a transition boundary between the normal bcc structure of Mo and a high-T phase, which they suggest could be fcc. They propose that this transition was misinterpreted as melting in DAC experiments. In confirmation, they note that their boundary also explains a transition seen in the SW data. We regard Belonoshko et al.s Letter as extremely important, but we note that it raises some puzzling questions, and we believe that their proposed phase diagram cannot be completely correct. We have calculated the Helmholtz and Gibbs free energies of the bcc, fcc and hcp phases of Mo, using essentially the same quasiharmonic methods as used by Belonoshko et al.; we find that at high-P and T Mo in the hcp structure is more stable than in bcc or fcc.
AgClO4 has been studied under compression by x-ray diffraction and density functional theory calculations. Experimental evidence of a structural phase transition from the tetragonal structure of AgClO4 to an orthorhombic barite-type structure has bee n found at 5.1 GPa. The transition is supported by total-energy calculations. In addition, a second transition to a monoclinic structure is theoretically proposed to take place beyond 17 GPa. The equation of state of the different phases is reported as well as the calculated Raman-active phonons and their pressure evolution. Finally, we provide a description of all the structures of AgClO4 and discuss their relationships. The structures are also compared with those of AgCl in order to explain the structural sequence determined for AgClO4.
Density functional perturbation theory calculations of alpha-quartz using extended norm conserving pseudopotentials have been used to study the elastic properties and phonon dispersion relations along various high symmetry directions as a function of bulk, uniaxial and non-hydrostatic pressure. The computed equation of state, elastic constants and phonon frequencies are found to be in good agreement with available experimental data. A zone boundary (1/3, 1/3, 0) K-point phonon mode becomes soft for pressures above P=32 GPa. Around the same pressure, studies of the Born stability criteria reveal that the structure is mechanically unstable. The phonon and elastic softening are related to the high pressure phase transitions and amorphization of quartz and these studies suggest that the mean transition pressure is lowered under non-hydrostatic conditions. Application of uniaxial pressure, results in a post-quartz crystalline monoclinic C2 structural transition in the vicinity of the K-point instability. This structure, intermediate between quartz and stishovite has two-thirds of the silicon atoms in octahedral coordination while the remaining silicon atoms remain tetrahedrally coordinated. This novel monoclinic C2 polymorph of silica, which is found to be metastable under ambient conditions, is possibly one of the several competing dense forms of silica containing octahedrally coordinated silicon. The possible role of high pressure ferroelastic phases in causing pressure induced amorphization in silica are discussed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا