ﻻ يوجد ملخص باللغة العربية
The surface current on the plasma-vacuum interface during a disruption event involving kink instability can play an important role in driving current into the vacuum vessel. However, there have been disagreements over the nature or even the sign of the surface current in recent theoretical calculations based on idealized step-function background plasma profiles. We revisit such calculations by replacing step-function profiles with more realistic profiles characterized by strong but finite gradient along the radial direction. It is shown that the resulting surface current is no longer a delta-function current density, but a finite and smooth current density profile with internal structure, concentrated within the region with strong plasma pressure gradient. Moreover, this current density profile has peaks of both signs, unlike the delta-function case with a sign opposite to, or the same as the plasma current. We show analytically and numerically that such current density can be separated into two parts, with one of them, called the convective current density, describing the transport of the background plasma density by the displacement, and the other part that remains, called the residual current density. It is argued that consideration of both types of current density is important and can resolve past controversies.
Nonlinear gyrokinetic simulations have been conducted to investigate turbulent transport in tokamak plasmas with rotational shear. At sufficiently large flow shears, linear instabilities are suppressed, but transiently growing modes drive subcritical
Axisymmetric free-boundary equilibrium reconstructions of tokamak plasmas in the Lithium Tokamak eXperiment (LTX) are performed using the PSI-Tri equilibrium code. Reconstructions in LTX are complicated by the presence of long-lived non-axisymmetric
Disruption prediction and mitigation is of key importance in the development of sustainable tokamakreactors. Machine learning has become a key tool in this endeavour. In this paper multiple machinelearning models will be tested and compared. A partic
Extending the ideal MHD stability code MISHKA, a new code, MISHKA-A, is developed to study the impact of pressure anisotropy on plasma stability. Based on full anisotropic equilibrium and geometry, the code can provide normal mode analysis with three
The effect of momentum injection on the temperature gradient in tokamak plasmas is studied. A plausible scenario for transitions to reduced transport regimes is proposed. The transition happens when there is sufficient momentum input so that the velo