ترغب بنشر مسار تعليمي؟ اضغط هنا

Equilibrium reconstruction with 3D eddy currents in the Lithium Tokamak eXperiment

58   0   0.0 ( 0 )
 نشر من قبل Chris Hansen
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Axisymmetric free-boundary equilibrium reconstructions of tokamak plasmas in the Lithium Tokamak eXperiment (LTX) are performed using the PSI-Tri equilibrium code. Reconstructions in LTX are complicated by the presence of long-lived non-axisymmetric eddy currents generated by vacuum vessel and first wall structures. To account for this effect, reconstructions are performed with additional toroidal current sources in these conducting regions. The source distributions are fixed poloidally, but their scale is adjusted as part of the full reconstruction. Eddy distributions are computed by toroidally averaging currents, generated by coupling to vacuum field coils, from a simplified 3D filament model of important conducting structures. The full 3D eddy current fields are also used to enable the inclusion of local magnetic field measurements, which have strong 3D eddy current pick-up, as reconstruction constraints. Using this method, equilibrium reconstruction yields good agreement with all available diagnostic signals. An accompanying field perturbation produced by 3D eddy currents on the plasma surface with primarily n=2, m=1 character is also predicted for these equilibria.



قيم البحث

اقرأ أيضاً

Uncertainties and errors in magnetic equilibrium reconstructions are a wide-spread problem in interpreting experimental data measured in the tokamak edge. This study demonstrates errors in EFIT++ reconstructions performed on the COMPASS tokamak by co mparing the outer midplane separatrix position to the Velocity Shear Layer (VSL) position. The VSL is detected as the plasma potential peak measured by a reciprocating ball-pen probe. A subsequent statistical analysis of nearly 400 discharges shows a strong systematic trend in the reconstructed separatrix position relative to the VSL, where the primary factors are plasma triangularity and the magnetic axis radial position. This dependency is significantly reduced after the measuring coils positions as recorded in EFIT input are optimised to provide a closer match between the synthetic coil signal calculated by the Biot-Savart law in a vacuum discharge and the actual coil signal. In conclusion, we suggest that applying this optimisation may lead to more accurate and reliable reconstructions of the COMPASS equilibrium, which would have a positive impact on the accuracy of measurement analysis performed in the edge plasma.
Various MHD (magnetohydrodynamic) equilibrium tools, some of which being recently developed or considerably updated, are used on the COMPASS tokamak at IPP Prague. MHD equilibrium is a fundamental property of the tokamak plasma, whose knowledge is re quired for many diagnostics and modelling tools. Proper benchmarking and validation of equilibrium tools is thus key for interpreting and planning tokamak experiments. We present here benchmarks and comparisons to experimental data of the EFIT++ reconstruction code [L.C. Appel et al., EPS 2006, P2.184], the free-boundary equilibrium code FREEBIE [J.-F. Artaud, S.H. Kim, EPS 2012, P4.023], and a rapid plasma boundary reconstruction code VacTH [B. Faugeras et al., PPCF 56, 114010 (2014)]. We demonstrate that FREEBIE can calculate the equilibrium and corresponding poloidal field (PF) coils currents consistently with EFIT++ reconstructions from experimental data. Both EFIT++ and VacTH can reconstruct equilibria generated by FREEBIE from synthetic, optionally noisy diagnostic data. Hence, VacTH is suitable for real-time control. Optimum reconstruction parameters are estimated.
66 - C. S. Ng , , A. Bhattacharjee 2017
The surface current on the plasma-vacuum interface during a disruption event involving kink instability can play an important role in driving current into the vacuum vessel. However, there have been disagreements over the nature or even the sign of t he surface current in recent theoretical calculations based on idealized step-function background plasma profiles. We revisit such calculations by replacing step-function profiles with more realistic profiles characterized by strong but finite gradient along the radial direction. It is shown that the resulting surface current is no longer a delta-function current density, but a finite and smooth current density profile with internal structure, concentrated within the region with strong plasma pressure gradient. Moreover, this current density profile has peaks of both signs, unlike the delta-function case with a sign opposite to, or the same as the plasma current. We show analytically and numerically that such current density can be separated into two parts, with one of them, called the convective current density, describing the transport of the background plasma density by the displacement, and the other part that remains, called the residual current density. It is argued that consideration of both types of current density is important and can resolve past controversies.
A model for tokamak discharge through deep learning has been done on a superconducting long-pulse tokamak (EAST). This model can use the control signals (i.e. Neutral Beam Injection (NBI), Ion Cyclotron Resonance Heating (ICRH), etc) to model normal discharge without the need for doing real experiments. By using the data-driven methodology, we exploit the temporal sequence of control signals for a large set of EAST discharges to develop a deep learning model for modeling discharge diagnostic signals, such as electron density $n_{e}$, store energy $W_{mhd}$ and loop voltage $V_{loop}$. Comparing the similar methodology, we use Machine Learning techniques to develop the data-driven model for discharge modeling rather than disruption prediction. Up to 95% similarity was achieved for $W_{mhd}$. The first try showed promising results for modeling of tokamak discharge by using the data-driven methodology. The data-driven methodology provides an alternative to physical-driven modeling for tokamak discharge modeling.
128 - Robert W. Johnson 2011
The neoclassical prescription to use an equation of motion to determine the electrostatic field within a tokamak plasma is fraught with difficulties. Herein we examine two popular expressions for the equilibrium electrostatic field so determined and show that one fails to withstand a formal scrutiny thereof while the other fails to respect the vector nature of the diamagnetic current. Reconsideration of the justification for the presence of the equilibrium electrostatic field indicates that no field is needed for a neutral plasma when considering the net bound current defined as the curl of the magnetization. With any shift in the toroidal magnetic flux distribution, a dynamic electric field is generated with both radial and poloidal components, providing an alternate explanation for any measurements thereof.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا