ﻻ يوجد ملخص باللغة العربية
By using unbiased continuos-space quantum Monte Carlo simulations, we investigate the ground state properties of a one-dimensional repulsive Fermi gas subjected to a commensurate periodic optical lattice (OL) of arbitrary intensity. The equation of state and the magnetic structure factor are determined as a function of the interaction strength and of the OL intensity. In the weak OL limit, Yangs theory for the energy of a homogeneous Fermi gas is recovered. In the opposite limit (deep OL), we analyze the convergence to the Lieb-Wu theory for the Hubbard model, comparing two approaches to map the continuous-space to the discrete-lattice model: the first is based on (noninteracting) Wannier functions, the second effectively takes into account strong-interaction effects within a parabolic approximation of the OL wells. We find that strong antiferromagnetic correlations emerge in deep OLs, and also in very shallow OLs if the interaction strength approaches the Tonks-Girardeau limit. In deep OLs we find quantitative agreement with density matrix renormalization group calculations for the Hubbard model. The spatial decay of the antiferromagnetic correlations is consistent with quasi long-range order even in shallow OLs, in agreement with previous theories for the half-filled Hubbard model.
We simulate a balanced attractively interacting two-component Fermi gas in a one-dimensional lattice perturbed with a moving potential well or barrier. Using the time-evolving block decimation method, we study different velocities of the perturbation
Motivated by recent experimental development, we investigate spin-orbit coupled repulsive Fermi atoms in a one-dimensional optical lattice. Using the density-matrix renormalization group method, we calculate momentum distribution function, gap, and s
We calculate the spatial distributions and the dynamics of a few-body two-component strongly interacting Bose gas confined to an effectively one-dimensional trapping potential. We describe the densities for each component in the trap for different in
We study the viscous properties of a system of weakly interacting spin-$frac{1}{2}$ fermions in one dimension. Accounting for the effect of interactions on the quasiparticle energy spectrum, we obtain the bulk viscosity of this system at low temperat
Properties of a single impurity in a one-dimensional Fermi gas are investigated in homogeneous and trapped geometries. In a homogeneous system we use McGuires expression [J. B. McGuire, J. Math. Phys. 6, 432 (1965)] to obtain interaction and kinetic