ترغب بنشر مسار تعليمي؟ اضغط هنا

Effects of interaction imbalance in a strongly repulsive one-dimensional Bose gas

130   0   0.0 ( 0 )
 نشر من قبل Rafael Barfknecht
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We calculate the spatial distributions and the dynamics of a few-body two-component strongly interacting Bose gas confined to an effectively one-dimensional trapping potential. We describe the densities for each component in the trap for different interaction and population imbalances. We calculate the time evolution of the system and show that, for a certain ratio of interactions, the minority population travels through the system as an effective wave packet.



قيم البحث

اقرأ أيضاً

We experimentally study the dynamics of a degenerate one-dimensional Bose gas that is subject to a continuous outcoupling of atoms. Although standard evaporative cooling is rendered ineffective by the absence of thermalizing collisions in this system , we observe substantial cooling. This cooling proceeds through homogeneous particle dissipation and many-body dephasing, enabling the preparation of otherwise unexpectedly low temperatures. Our observations establish a scaling relation between temperature and particle number, and provide insights into equilibration in the quantum world.
We prepare a chemically and thermally one-dimensional (1d) quantum degenerate Bose gas in a single microtrap. We introduce a new interferometric method to distinguish the quasicondensate fraction of the gas from the thermal cloud at finite temperatur e. We reach temperatures down to $kTapprox 0.5hbaromega_perp$ (transverse oscillator eigenfrequency $omega_perp$) when collisional thermalization slows down as expected in 1d. At the lowest temperatures the transverse momentum distribution exhibits a residual dependence on the line density $n_{1d}$, characteristic for 1d systems. For very low densities the approach to the transverse single particle ground state is linear in $n_{1d}$.
We analyze the two-body momentum correlation function for a uniform weakly interacting one-dimensional Bose gas. We show that the strong positive correlation between opposite momenta, expected in a Bose-Einstein condensate with a true long-range orde r, almost vanishes in a phase-fluctuating quasicondensate where the long-range order is destroyed. Using the Luttinger liquid approach, we derive an analytic expression for the momentum correlation function in the quasicondensate regime, showing (i) the reduction and broadening of the opposite-momentum correlations (compared to the singular behavior in a true condensate) and (ii) an emergence of anticorrelations at small momenta. We also numerically investigate the momentum correlations in the crossover between the quasicondensate and the ideal Bose-gas regimes using a classical field approach and show how the anticorrelations gradually disappear in the ideal-gas limit.
We analyze free expansion of a trapped one-dimensional Bose gas after a sudden release from the confining trap potential. By using the stationary phase and local density approximations, we show that the long-time asymptotic density profile and the mo mentum distribution of the gas are determined by the initial distribution of Bethe rapidities (quasimomenta) and hence can be obtained from the solutions to the Lieb-Liniger equations in the thermodynamic limit. For expansion from a harmonic trap, and in the limits of very weak and very strong interactions, we recover the self-similar scaling solutions known from the hydrodynamic approach. For all other power-law traps and arbitrary interaction strengths, the expansion is not self-similar and shows strong dependence of the density profile evolution on the trap anharmonicity. We also characterize dynamical fermionization of the expanding cloud in terms of correlation functions describing phase and density fluctuations.
We investigate magnetism and quantum phase transitions in a one-dimensional system of integrable spin-1 bosons with strongly repulsive density-density interaction and antiferromagnetic spin exchange interaction via the thermodynamic Bethe ansatz meth od. At zero temperature, the system exhibits three quantum phases: (i) a singlet phase of boson pairs when the external magnetic field $H$ is less than the lower critical field $H_{c1}$; (ii) a ferromagnetic phase of atoms in the hyperfine state $|F=1, m_{F}=1>$ when the external magnetic field exceeds the upper critical field $H_{c2}$; and (iii) a mixed phase of singlet pairs and unpaired atoms in the intermediate region $H_{c1}<H<H_{c2}$. At finite temperatures, the spin fluctuations affect the thermodynamics of the model through coupling the spin bound states to the dressed energy for the unpaired $m_{F}=1$ bosons. However, such spin dynamics is suppressed by a sufficiently strong external field at low temperatures. Thus the singlet pairs and unpaired bosons may form a two-component Luttinger liquid in the strong coupling regime.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا