ﻻ يوجد ملخص باللغة العربية
We develop numerical tools for Diagrammatic Monte-Carlo simulations of non-Abelian lattice field theories in the tHooft large-N limit based on the weak-coupling expansion. First we note that the path integral measure of such theories contributes a bare mass term in the effective action which is proportional to the bare coupling constant. This mass term renders the perturbative expansion infrared-finite and allows to study it directly in the large-N and infinite-volume limits using the Diagrammatic Monte-Carlo approach. On the exactly solvable example of a large-N O(N) sigma model in D=2 dimensions we show that this infrared-finite weak-coupling expansion contains, in addition to powers of bare coupling, also powers of its logarithm, reminiscent of re-summed perturbation theory in thermal field theory and resurgent trans-series without exponential terms. We numerically demonstrate the convergence of these double series to the manifestly non-perturbative dynamical mass gap. We then develop a Diagrammatic Monte-Carlo algorithm for sampling planar diagrams in the large-N matrix field theory, and apply it to study this infrared-finite weak-coupling expansion for large-N U(N)xU(N) nonlinear sigma model (principal chiral model) in D=2. We sample up to 12 leading orders of the weak-coupling expansion, which is the practical limit set by the increasingly strong sign problem at high orders. Comparing Diagrammatic Monte-Carlo with conventional Monte-Carlo simulations extrapolated to infinite N, we find a good agreement for the energy density as well as for the critical temperature of the deconfinement transition. Finally, we comment on the applicability of our approach to planar QCD at zero and finite density.
Using ultracold alkaline-earth atoms in optical lattices, we construct a quantum simulator for U(N) and SU(N) lattice gauge theories with fermionic matter based on quantum link models. These systems share qualitative features with QCD, including chir
In order to check the validity and the range of applicability of the 1/N expansion, we performed numerical simulations of the two-dimensional lattice CP(N-1) models at large N, in particular we considered the CP(20) and the CP(40) models. Quantitativ
In this work we explore the possibility of spontaneous breaking of global symmetries at all nonzero temperatures for conformal field theories (CFTs) in $D = 4$ space-time dimensions. We show that such a symmetry-breaking indeed occurs in certain fami
We utilize a diagrammatic notation for invariant tensors to construct the Young projection operators for the irreducible representations of the unitary group U(n), prove their uniqueness, idempotency, and orthogonality, and rederive the formula for t
In this work, a second-order transport coefficient (the curvature-matter coupling $kappa$) is calculated exactly for the 3+1d O(N) model at large N for any coupling value. Since the theory is `trivial in the sense of possessing a Landau pole, the res