ﻻ يوجد ملخص باللغة العربية
In this work we explore the possibility of spontaneous breaking of global symmetries at all nonzero temperatures for conformal field theories (CFTs) in $D = 4$ space-time dimensions. We show that such a symmetry-breaking indeed occurs in certain families of non-supersymmetric large $N$ gauge theories at a planar limit. We also show that this phenomenon is accompanied by the system remaining in a persistent Brout-Englert-Higgs (BEH) phase at any temperature. These analyses are motivated by the work done in arXiv:2005.03676 where symmetry-breaking was observed in all thermal states for certain CFTs in fractional dimensions. In our case, the theories demonstrating the above features have gauge groups which are specific products of $SO(N)$ in one family and $SU(N)$ in the other. Working in a perturbative regime at the $Nrightarrowinfty$ limit, we show that the beta functions in these theories yield circles of fixed points in the space of couplings. We explicitly check this structure up to two loops and then present a proof of its survival under all loop corrections. We show that under certain conditions, an interval on this circle of fixed points demonstrates both the spontaneous breaking of a global symmetry as well as a persistent BEH phase at all nonzero temperatures. The broken global symmetry is $mathbb{Z}_2$ in one family of theories and $U(1)$ in the other. The corresponding order parameters are expectation values of the determinants of bifundamental scalar fields in these theories. We characterize these symmetries as baryon-like symmetries in the respective models.
It is widely expected that at sufficiently high temperatures order is always lost, e.g. magnets loose their ferromagnetic properties. We pose the question of whether this is always the case in the context of quantum field theory in $d$ space dimensio
Considering marginally relevant and relevant deformations of the weakly coupled $(3+1)$-dimensional large $N$ conformal gauge theories introduced in arXiv:2011.13981, we study the patterns of phase transitions in these systems that lead to a symmetry
We study in detail various information theoretic quantities with the intent of distinguishing between different charged sectors in fractionalized states of large-$N$ gauge theories. For concreteness, we focus on a simple holographic $(2+1)$-dimension
The conception of the conformal phase transiton (CPT), which is relevant for the description of non-perturbative dynamics in gauge theories, is introduced and elaborated. The main features of such a phase transition are established. In particular, it
We consider a class of N=2 conformal SU(N) SYM theories in four dimensions with matter in the fundamental, two-index symmetric and anti-symmetric representations, and study the corresponding matrix model provided by localization on a sphere S4, which