ترغب بنشر مسار تعليمي؟ اضغط هنا

Analytic Transport from Weak to Strong Coupling in the O(N) model

233   0   0.0 ( 0 )
 نشر من قبل Paul Romatschke
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Paul Romatschke




اسأل ChatGPT حول البحث

In this work, a second-order transport coefficient (the curvature-matter coupling $kappa$) is calculated exactly for the 3+1d O(N) model at large N for any coupling value. Since the theory is `trivial in the sense of possessing a Landau pole, the result for $kappa$ only is free from cut-off artifacts much below the Landau pole in the effective field theory sense. Nevertheless, this leaves a large range of coupling values where this transport coefficient can be determined non-perturbatively and analytically with little ambiguity. Along with thermodyamic results also calculated in this work, I expect exact large N results to provide good quantitative predictions for N=1 scalar field theory with $phi^4$ interaction.



قيم البحث

اقرأ أيضاً

In 2+1 dimensions, QED becomes exactly solvable for all values of the fermion charge $e$ in the limit of many fermions $N_fgg 1$. We present results for the free energy density at finite temperature $T$ to next-to-leading-order in large $N_f$. In the naive large $N_f$ limit, we uncover an apparently UV-divergent contribution to the vacuum energy at order ${cal O}(e^6 N_f^3)$, which we argue to become a finite contribution of order ${cal O}(N_f^4 e^6)$ when resumming formally higher-order $1/N_f$ contributions. We find the finite-temperature free energy to be well-behaved for all values of the dimensionless coupling $e^2N_f/T$, and to be bounded by the free energy of $N_f$ free fermions and non-interacting QED3, respectively. We invite follow-up studies from finite-temperature lattice gauge theory at large but fixed $N_f$ to test our results in the regime $e^2N_f/Tgg 1$.
We compute, using the method of large spin perturbation theory, the anomalous dimensions and OPE coefficients of all leading twist operators in the critical $ O(N) $ model, to fourth order in the $ epsilon $-expansion. This is done fully within a boo tstrap framework, and generalizes a recent result for the CFT-data of the Wilson-Fisher model. The anomalous dimensions we obtain for the $ O(N) $ singlet operators agree with the literature values, obtained by diagrammatic techniques, while the anomalous dimensions for operators in other representations, as well as all OPE coefficients, are new. From the results for the OPE coefficients, we derive the $ epsilon^4 $ corrections to the central charges $ C_T $ and $ C_J $, which are found to be compatible with the known large $ N $ expansions. Predictions for the central charge in the strongly coupled 3d model, including the 3d Ising model, are made for various values of $ N $, which compare favourably with numerical results and previous predictions.
We use quantum kinetic theory to calculate the thermoelectric transport properties of the 2D single band Fermi-Hubbard model in the weak coupling limit. For generic filling, we find that the high-temperature limiting behaviors of the electrical ($sim T$) and thermal ($sim T^2$) resistivities persist down to temperatures of order the hopping matrix element $Tsim t$, almost an order of magnitude below the bandwidth. At half filling, perfect nesting leads to anomalous low temperature scattering and nearly $T$-linear electrical resistivity at all temperatures. We hypothesize that the $T$-linear resistivity observed in recent cold atom experiments is continuously connected to this weak coupling physics and suggest avenues for experimental verification. We find a number of other novel thermoelectric results, such as a low-temperature Wiedemann-Franz law with Lorenz coefficient $5pi^2/36$.
156 - Paul Romatschke 2019
A famous example of gauge/gravity duality is the result that the entropy density of strongly coupled ${cal N}=4$ SYM in four dimensions for large N is exactly 3/4 of the Stefan-Boltzmann limit. In this work, I revisit the massless O(N) model in 2+1 d imensions, which is analytically solvable at finite temperature $T$ for all couplings $lambda$ in the large N limit. I find that the entropy density monotonically decreases from the Stefan-Boltzmann limit at $lambda=0$ to exactly 4/5 of the Stefan-Boltzmann limit at $lambda=infty$. Calculating the retarded energy-momentum tensor correlator in the scalar channel at $lambda=infty$, I find that it has two logarithmic branch cuts originating at $omega=pm 4 T ln frac{1+sqrt{5}}{2}$, but no singularities in the whole complex frequency plane. I show that the ratio 4/5 and the location of the branch points both are universal within a large class of bosonic CFTs in 2+1 dimensions.
The SYK model has a wormhole-like solution after averaging over the fermionic coupling in the nearly $AdS_2$ space. Even when the couplings are fixed the contribution of these wormholes continues to exist and new saddle points appear which are interp reted as half-wormholes. In this paper, we will study the fate of these wormholes in a model without quenched disorder namely a tensor model with $O(N)^{q-1}$ gauge symmetry whose correlation function and thermodynamics in the large $N$ limit are the same as that of SYK model. We will restate the factorization problem linked with the wormhole threaded Wilson, operator, in terms of global charges or non-trivial cobordism classes associated with disconnected wormholes. Therefore in order for the partition function to factorize especially at short distances, there must exist certain topological defects which break the global symmetry associated with wormholes and make the theory devoid of global symmetries. We will interpret these wormholes with added topological defects as our half-wormholes. We will also comment on the late time behaviour of the spectral form factor, particularly its leading and sub-leading order contributions coming from higher genus wormholes in the gravitational sector. We also found its underlying connections with the Brownian SYK model, particularly in the plateau region which has constant contributions coming from non-trivial saddle points of holonomy from the wormhole followed by an exponential rising part, where the other non-trivial saddles from half-wormhole dominate and give rise to unusual thermodynamics in the bulk sector due to non-perturbative effects.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا