ﻻ يوجد ملخص باللغة العربية
Magnetic nanoparticles are promising systems for biomedical applications and in particular for Magnetic Fluid Hyperthermia, a promising therapy that utilizes the heat released by such systems to damage tumor cells. We present an experimental study of the physical properties that influences the capability of heat release, i.e. the Specific Loss Power, SLP, of three biocompatible ferrofluid samples having a magnetic core of maghemite with different core diameter d= 10.2, 14.6 and 19.7 nm. The SLP was measured as a function of frequency f and intensity of the applied alternating magnetic field H, and it turned out to depend on the core diameter, as expected. The results allowed us to highlight experimentally that the physical mechanism responsible for the heating is size-dependent and to establish, at applied constant frequency, the phenomenological functional relationship SLP=cH^x, with 2<x<3 for all samples. The x-value depends on sample size and field frequency/ intensity, here chosen in the typical range of operating magnetic hyperthermia devices. For the smallest sample, the effective relaxation time Teff=19.5 ns obtained from SLP data is in agreement with the value estimated from magnetization data, thus confirming the validity of the Linear Response Theory model for this system at properly chosen field intensity and frequency.
We investigate the magnetic nanoparticles (fluid) hyperthermia in non-adiabatic conditions through the calorimetric method. Specifically, we propose a theoretical approach to magnetic hyperthermia from a thermodynamic point of view. To test the robus
We report maximized specific loss power and intrinsic loss power approaching theoretical limits for AC magnetic field heating of nanoparticles. This is achieved by engineering the effective magnetic anisotropy barrier of nanoparticles via alloying of
Nanomagnetic hyperthermia (NMH) is intensively studied with the prospect of cancer therapy. A major challenge is to determine the dissipated power during in vivo conditions and conventional methods are either invasive or inaccurate. We present a non-
Single-domain ferromagnetic nanoparticle systems can be used to transfer energy from a time-dependent magnetic field into their environment. This local heat generation, i.e., magnetic hyperthermia, receives applications in cancer therapy which requir
Absorbed power of nanoparticles during magnetic hyperthermia can be well determined from changes in the quality factor ($Q$ factor) of a resonator, in which the radiofrequency (RF) absorbent is placed. We present an order of magnitude improvement in