ﻻ يوجد ملخص باللغة العربية
Single-domain ferromagnetic nanoparticle systems can be used to transfer energy from a time-dependent magnetic field into their environment. This local heat generation, i.e., magnetic hyperthermia, receives applications in cancer therapy which requires the enhancement of the energy loss. A possible way to improve the efficiency is to chose a proper type of applied field, e.g., a rotating instead of an oscillating one. The latter case is very well studied and there is an increasing interest in the literature to investigate the former although it is still unclear under which circumstances the rotating applied field can be more favourable than the oscillating one. The goal of this work is to incorporate the presence of a static field and to perform a systematic study of the non-linear dynamics of the magnetisation in the framework of the deterministic Landau-Lifshitz-Gilbert equation in order to calculate energy losses. Two cases are considered: the static field is either assumed to be perpendicular to the plane of rotation or situated in the plane of rotation. In the latter case a significant increase in the energy loss/cycle is observed if the magnitudes of the static and the rotating fields have a certain ratio (e.g. it should be one for isotropic nanoparticles). It can be used to super-localise the heat transfer: in case of an inhomogeneous applied static field, tissues are heated up only where the magnitudes of the static and rotating fields reach the required ratio.
Magnetic nanoparticles are promising systems for biomedical applications and in particular for Magnetic Fluid Hyperthermia, a promising therapy that utilizes the heat released by such systems to damage tumor cells. We present an experimental study of
We present preliminary results on the possible effects that primordial magnetic fields can have for a warm inflation scenario, based on global supersymmetry, with a new-inflation-type potential. This work is motivated by two considerations: first, ma
When magnetic nanoparticles (MNPs) are single-domain and magnetically independent, their magnetic properties and the conditions to optimize their efficiency in magnetic hyperthermia applications are now well-understood. However, the influence of magn
Magnetic fluid hyperthermia (MFH), the procedure of raising the temperature of tumor cells using magnetic nanoparticles (MNPs) as heating agents, has proven successful in treating some types of cancer. However, the low heating power generated under p
We study the effects of primordial magnetic fields on the inflationary potential in the context of a warm inflation scenario. The model, based on global supersymmetry with a new-inflation-type potential and a coupling between the inflaton and a heavy