ﻻ يوجد ملخص باللغة العربية
An integrated system of hardware and software allowing precise definition of arbitrarily oriented magnetic fields up to |B| = 1 {mu}T within a five-layer mumetal shield is described. The system is calibrated with reference to magnetic resonance observed between Zeeman states of the 6S$_{1/2}$ F = 4 $^{133}$Cs ground state. Magnetic field definition over the full 4{pi} solid angle is demonstrated, with one-sigma tolerances in magnitude, orientation and gradient of {delta}|B| = 0.94 nT, {delta}{theta} = 5.9 mrad and {delta}$ abla$ B = 13.0 pT/mm, respectively. This field control is used to empirically map Mx magnetometer signal amplitude as a function of the static field (B0) orientation.
We investigate a search for the oscillating current induced by axion dark matter in an external magnetic field using optically pumped magnetometers (OPMs). This experiment is based upon the LC circuit axion detection concept of Sikivie, Sullivan, and
Optically detected magnetic resonance of nitrogen vacancy centers in diamond offers novel routes to both DC and AC magnetometry in diamond anvil cells under high pressures ($>3$ GPa). However, a serious challenge to realizing experiments has been the
The magnetic-field stability of a mass spectrometer plays a crucial role in precision mass measurements. In the case of mass determination of short-lived nuclides with a Penning trap, major causes of instabilities are temperature fluctuations in the
We present a design and characterization of optically transparent electrodes suitable for atomic and molecular physics experiments where high optical access is required. The electrodes can be operated in air at standard atmospheric pressure and do no
We demonstrate an optically pumped $^{87}$Rb magnetometer in a microfabricated vapor cell based on a zero-field dispersive resonance generated by optical modulation of the $^{87}$Rb ground state energy levels. The magnetometer is operated in the spin