We demonstrate an optically pumped $^{87}$Rb magnetometer in a microfabricated vapor cell based on a zero-field dispersive resonance generated by optical modulation of the $^{87}$Rb ground state energy levels. The magnetometer is operated in the spin-exchange relaxation-free regime where high magnetic field sensitivities can be achieved. This device can be useful in applications requiring array-based magnetometers where radio frequency magnetic fields can induce cross-talk among adjacent sensors or affect the source of the magnetic field being measured.
We demonstrate remote detection of rotating machinery, using an atomic magnetometer at room temperature and in an unshielded environment. The system relies on the coupling of the AC magnetic signature of the target with the spin-polarized, precessing
atomic vapor of a radio-frequency optical atomic magnetometer. The AC magnetic signatures of rotating equipment or electric motors appear as sidebands in the power spectrum of the atomic sensor, which can be tuned to avoid noisy bands that would otherwise hamper detection. A portable apparatus is implemented and experimentally tested. Proof-of-concept investigations are performed with test targets mimicking possible applications, and the operational conditions for optimum detection are determined. Our instrument provides comparable or better performance than a commercial fluxgate and allows detection of rotating machinery behind a wall. These results demonstrate the potential for ultrasensitive devices for remote industrial and usage monitoring, security, and surveillance.
We demonstrate the use of a hybrid $^{3}$He / $^{87}$Rb magnetometer to measure absolute magnetic fields in the pT range. The measurements were undertaken by probing time-dependent $^3$He magnetisation using $^{87}$Rb zero-field magnetometers. Measur
ements were taken to demonstrate the use of the magnetometer in cancelling residual fields within a magnetic shield. It was shown that the absolute field could be reduced to the 10 pT level by using field readings from the magnetometer. Furthermore, the hybrid magnetometer was shown to be applicable for the reduction of gradient fields by optimising the effective $^3$He $T_2$ time. This procedure represents a convenient and consistent way to provide a near zero magnetic field environment which can be potentially used as a base for generating desired magnetic field configurations for use in precision measurements.
We propose a novel experimental approach to explore exotic spin-dependent interactions using a spin-exchange relaxation-free (SERF) magnetometer, the most sensitive non-cryogenic magnetic-field sensor. This approach studies the interactions between o
ptically polarized electron spins located inside a vapor cell of the SERF magnetometer and unpolarized or polarized particles of external solid-state objects. The coupling of spin-dependent interactions to the polarized electron spins of the magnetometer induces the tilt of the electron spins, which can be detected with high sensitivity by a probe laser beam similarly as an external magnetic field. We estimate that by moving unpolarized or polarized objects next to the SERF Rb vapor cell, the experimental limit to the spin-dependent interactions can be significantly improved over existing experiments, and new limits on the coupling strengths can be set in the interaction range below 0.01 m.
Noise measurements have been carried out in the LISA bandwidth (0.1 mHz to 100 mHz) to characterize an all-optical atomic magnetometer based on nonlinear magneto-optical rotation. This was done in order to assess if the technology can be used for spa
ce missions with demanding low-frequency requirements like the LISA concept. Magnetometry for low-frequency applications is usually limited by $1/f$ noise and thermal drifts, which become the dominant contributions at sub-millihertz frequencies. Magnetic field measurements with atomic magnetometers are not immune to low-frequency fluctuations and significant excess noise may arise due to external elements, such as temperature fluctuations or intrinsic noise in the electronics. In addition, low-frequency drifts in the applied magnetic field have been identified in order to distinguish their noise contribution from that of the sensor. We have found the technology suitable for LISA in terms of sensitivity, although further work must be done to characterize the low-frequency noise in a miniaturized setup suitable for space missions.
We report on a 2x2 array of radio-frequency atomic magnetometers in magnetic induction tomography configuration. Active detection, localization, and real-time tracking of conductive, non-magnetic targets are demonstrated in air and saline water. Pene
tration in different media and detection are achieved thanks to the sensitivity and tunability of the sensors, and to the active nature of magnetic induction probing. We obtained a 100% success rate for automatic detection and 93% success rate for automatic localization in air and water, up to 190 mm away from the sensors plane (100 mm underwater). We anticipate magnetic induction tomography with arrays of atomic magnetometers finding applications in civil engineering and maintenance, oil&gas industry, geological surveys, marine science, archeology, search and rescue, and security and surveillance.