ﻻ يوجد ملخص باللغة العربية
We investigate a search for the oscillating current induced by axion dark matter in an external magnetic field using optically pumped magnetometers (OPMs). This experiment is based upon the LC circuit axion detection concept of Sikivie, Sullivan, and Tanner. The modification of Maxwells equations caused by the axion-photon coupling results in a minute oscillating magnetic field at the frequency equal to the axion mass in the presence of magnetic field. This induced magnetic field could be searched for using an LC circuit amplifier with an OPM, the most sensitive cryogen-free magnetic-field sensor, in a room temperature experiment, avoiding the need for a complicated and expensive cryogenic system. We discuss how an existing magnetic resonance imaging (MRI) experiment can be modified to search for axions in a previously unexplored part of the parameter space. Our existing detection setup, optimized for MRI, is already sensitive to an axion-photon coupling of $10^{-7}$ GeV$^{-1}$ for an axion mass near $3times10^{-10}$ eV. While this is ruled out by limits from astrophysics and solar axion searches, we show that realistic modifications, and optimization of the experiment for axion detection, can set a new limit on the axion-photon coupling up to three orders of magnitude beyond the current best limit, for axion masses between $10^{-11}$ eV and $10^{-7}$ eV.ion masses between $10^{-11}$ eV and $10^{-7}$ eV.
An array of sixteen laser-pumped scalar Cs magnetometers was part of the neutron electric dipole moment (nEDM) experiment taking data at the Paul Scherrer Institute in 2015 and 2016. It was deployed to measure the gradients of the experiments magneti
We propose an experimental search for an axion-induced oscillating electric dipole moment (OEDM) for electrons using state-of-the-art alkali vapor-cell atomic magnetometers. The axion is a hypothesized new fundamental particle which can resolve the s
The sensitivity of experimental searches for axion dark matter coupled to photons is typically proportional to the strength of the applied static magnetic field. We demonstrate how a permeable material can be used to enhance the magnitude of this sta
In the recent work arXiv:1809.02446, the authors proposed a new method measuring the electron oscillating electric dipole moment (eOEDM) using atomic magnetomaters. This eOEDM is induced by the interaction between the electron magnetic dipole moment,
When optically pumped magnetometers are aimed for the use in Earths magnetic field, the orientation of the sensor to the field direction is of special importance to achieve accurate measurement result. Measurement errors and inaccuracies related to t