ﻻ يوجد ملخص باللغة العربية
We compute the isospin susceptibility in an effective O($n$) scalar field theory (in $d=4$ dimensions), to third order in chiral perturbation theory ($chi$PT) in the delta--regime using the quantum mechanical rotator picture. This is done in the presence of an additional coupling, involving a parameter $eta$, describing the effect of a small explicit symmetry breaking term (quark mass). For the chiral limit $eta=0$ we demonstrate consistency with our previous $chi$PT computations of the finite-volume mass gap and isospin susceptibility. For the massive case by computing the leading mass effect in the susceptibility using $chi$PT with dimensional regularization, we determine the $chi$PT expansion for $eta$ to third order. The behavior of the shape coefficients for long tube geometry obtained here might be of broader interest. The susceptibility calculated from the rotator approximation differs from the $chi$PT result in terms vanishing like $1/ell$ for $ell=L_t/L_stoinfty$. We show that this deviation can be described by a correction to the rotator spectrum proportional to the square of the quadratic Casimir invariant.
In a previous paper we found that the isospin susceptibility of the O($n$) sigma-model calculated in the standard rotator approximation differs from the next-to-next to leading order chiral perturbation theory result in terms vanishing like $1/ell,,$
We investigate some properties of the standard rotator approximation of the SU$(N)times,$SU$(N)$ sigma-model in the delta-regime. In particular we show that the isospin susceptibility calculated in this framework agrees with that computed by chiral p
The delta-regime of QCD is characterised by light quarks in a small spatial box, but a large extent in (Euclidean) time. In this setting a specific variant of chiral perturbation theory - the delta-expansion - applies, based on a quantum mechanical t
The low lying spectrum of the O(n) effective field theory is calculated in the delta-regime in 3 and 4 space-time dimensions using lattice regularization to NNL order. It allows, in particular, to determine, using numerical simulations in different s
We analyze the free energy of the integrable two dimensional O(4) sigma model in a magnetic field. We use Volins method to extract high number (2000) of perturbative coefficients with very high precision. The factorial growth of these coefficients ar