ﻻ يوجد ملخص باللغة العربية
The low lying spectrum of the O(n) effective field theory is calculated in the delta-regime in 3 and 4 space-time dimensions using lattice regularization to NNL order. It allows, in particular, to determine, using numerical simulations in different spatial volumes, the pion decay constant F in QCD with 2 flavours or the spin stiffness rho for an antiferromagnet in d=2+1 dimensions.
We compute the isospin susceptibility in an effective O($n$) scalar field theory (in $d=4$ dimensions), to third order in chiral perturbation theory ($chi$PT) in the delta--regime using the quantum mechanical rotator picture. This is done in the pres
In a previous paper we found that the isospin susceptibility of the O($n$) sigma-model calculated in the standard rotator approximation differs from the next-to-next to leading order chiral perturbation theory result in terms vanishing like $1/ell,,$
We solve exactly the Dyson-Schwinger equations for Yang-Mills theory in 3 and 4 dimensions. This permits us to obtain the exact correlation functions till order 2. In this way, the spectrum of the theory is straightforwardly obtained and comparison w
We investigate some properties of the standard rotator approximation of the SU$(N)times,$SU$(N)$ sigma-model in the delta-regime. In particular we show that the isospin susceptibility calculated in this framework agrees with that computed by chiral p
We compute the OPE coefficients of the bosonic tensor model of cite{Benedetti:2019eyl} for three point functions with two fields and a bilinear with zero and non-zero spin. We find that all the OPE coefficients are real in the case of an imaginary te