ﻻ يوجد ملخص باللغة العربية
We analyze the free energy of the integrable two dimensional O(4) sigma model in a magnetic field. We use Volins method to extract high number (2000) of perturbative coefficients with very high precision. The factorial growth of these coefficients are regulated by switching to the Borel transform, where we perform several asymptotic analysis. High precision data allowed to identify Stokes constants and alien derivatives with exact expressions. These reveal a nice resurgence structure which enables to formulate the first few terms of the ambiguity free trans-series. We check these results against the direct numerical solution of the exact integral equation and find complete agreement.
TBA integral equations are proposed for 1-particle states in the sausage- and SS-models and their $sigma$-model limits. Combined with the ground state TBA equations the exact mass gap is computed in the O(3) and O(4) nonlinear $sigma$-model and the r
Multi-particle form factors of local operators in integrable models in two dimensions seem to have the property that they factorize when one subset of the particles in the external states are boosted by a large rapidity with respect to the others. Th
We study dual strong coupling description of integrability-preserving deformation of the $O(N)$ sigma model. Dual theory is described by a coupled theory of Dirac fermions with four-fermion interaction and bosonic fields with exponential interactions
A non-perturbative Renormalization Group approach is used to calculate scaling functions for an O(4) model in d=3 dimensions in the presence of an external symmetry-breaking field. These scaling functions are important for the analysis of critical be
We study a resurgence structure of a quantum field theory with a phase transition to uncover relations between resurgence and phase transitions. In particular, we focus on three-dimensional $mathcal{N}=4$ supersymmetric quantum electrodynamics (SQED)