ترغب بنشر مسار تعليمي؟ اضغط هنا

Are two nucleons bound in lattice QCD for heavy quark masses? -- Consistency check with Luschers finite volume formula --

89   0   0.0 ( 0 )
 نشر من قبل Takumi Iritani
 تاريخ النشر 2017
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

On the basis of the Luschers finite volume formula, a simple test (consistency check or sanity check) is introduced and applied to inspect the recent claims of the existence of the nucleon-nucleon ($NN$) bound state(s) for heavy quark masses in lattice QCD. We show that the consistency between the scattering phase shifts at $k^2 > 0$ and/or $k^2 < 0$ obtained from the lattice data and the behavior of phase shifts from the effective range expansion (ERE) around $k^2=0$ exposes the validity of the original lattice data, otherwise such information is hidden in the energy shift $Delta E$ of the two nucleons on the lattice. We carry out this sanity check for all the lattice results in the literature claiming the existence of the $NN$ bound state(s) for heavy quark masses, and find that (i) some of the $NN$ data show clear inconsistency between the behavior of ERE at $k^2 > 0$ and that at $k^2 < 0$, (ii) some of the $NN$ data exhibit singular behavior of the low energy parameter (such as the divergent effective range) at $k^2<0$, (iii) some of the $NN$ data have the unphysical residue for the bound state pole in S-matrix, and (iv) the rest of the $NN$ data are inconsistent among themselves. Furthermore, we raise a caution of using the ERE in the case of the multiple bound states. Our finding, together with the fake plateau problem previously pointed out by the present authors, brings a serious doubt on the existence of the $NN$ bound states for pion masses heavier than 300 MeV in the previous studies.



قيم البحث

اقرأ أيضاً

In this comment, we address a number of erroneous discussions and conclusions presented in a recent preprint by the HALQCD collaboration, arXiv:1703.07210. In particular, we demonstrate that lattice QCD determinations of bound states at quark masses corresponding to a pion mass of $m_pi = 806$ MeV are robust, and that the phases shifts extracted by the NPLQCD collaboration for these systems pass all of the sanity checks introduced in arXiv:1703.07210.
There exist two methods to study two-baryon systems in lattice QCD: the direct method which extracts eigenenergies from the plateaux of the temporal correlator and the HAL QCD method which extracts observables from the non-local potential associated with the tempo-spatial correlator. Although the two methods should give the same results theoretically, qualitatively different results have been reported. Recently, we pointed out that the separation of the ground state from the excited states is crucial to obtain sensible results in the former, while both states provide useful signals in the latter. In this paper, we identify the contribution of each state in the direct method by decomposing the two-baryon correlators into the finite-volume eigenmodes obtained from the HAL QCD method. We consider the $XiXi$ system in the $^1$S$_0$ channel at $m_pi = 0.51$ GeV in 2+1 flavor lattice QCD using the wall and smeared quark sources. We demonstrate that the pseudo-plateau at early time slices (t = 1~2 fm) from the smeared source in the direct method indeed originates from the contamination of the excited states, and the true plateau with the ground state saturation is realized only at t > 5~15 fm corresponding to the inverse of the lowest excitation energy. We also demonstrate that the two-baryon operator can be optimized by utilizing the finite-volume eigenmodes, so that (i) the finite-volume energy spectra from the HAL QCD method agree with those from the optimized temporal correlator and (ii) the correct spectra would be accessed in the direct method only if highly optimized operators are employed. Thus we conclude that the long-standing issue on the consistency between the Luschers finite volume method and the HAL QCD method for two baryons is now resolved: They are consistent with each other quantitatively only if the excited contamination is properly removed in the former.
A sanity check rules out certain types of obviously false results, but does not catch every possible error. After reviewing such a sanity check for $NN$ bound states with the Luschers finite volume formula[1-3], we give further evidences for the oper ator dependence of plateaux, a symptom of the fake plateau problem, against the claim in [4]. We then present our critical comments on [5] by NPLQCD: (i) Operator dependences of plateaux in NPL2013[6,7] exist with the $P$-values of 4--5%. (ii) The volume independence of plateaux in NPL2013 does not prove their correctness. (iii) Effective range expansion (ERE) fits in NPL2013 violate the physical pole condition. (iv) Ref.[5] is partly based on new data and analysis different from the original ones[6,7]. (v) A new ERE in Refs.[5,8] does not satisfy the Luschers finite volume formula. [1] T. Iritani et al., JHEP 10 (2016) 101. [2] S. Aoki et al., PoS (LATTICE2016) 109. [3] T. Iritani et al., 1703.0720. [4] T. Yamazaki et al., PoS (LATTICE2017) 108. [5] S.R. Beane et al., 1705.09239. [6] S.R. Beane et al., PRD87 (2013) 034506. [7] S.R. Beane et al., PRC88 (2013) 024003. [8] M.L. Wagman et al., 1706.06550.
Recently, a framework has been developed to study form factors of two-hadron states probed by an external current. The method is based on relating finite-volume matrix elements, computed using numerical lattice QCD, to the corresponding infinite-volu me observables. As the formalism is complicated, it is important to provide non-trivial checks on the final results and also to explore limiting cases in which more straightforward predications may be extracted. In this work we provide examples on both fronts. First, we show that, in the case of a conserved vector current, the formalism ensures that the finite-volume matrix element of the conserved charge is volume-independent and equal to the total charge of the two-particle state. Second, we study the implications for a two-particle bound state. We demonstrate that the infinite-volume limit reproduces the expected matrix element and derive the leading finite-volume corrections to this result for a scalar current. Finally, we provide numerical estimates for the expected size of volume effects in future lattice QCD calculations of the deuterons scalar charge. We find that these effects completely dominate the infinite-volume result for realistic lattice volumes and that applying the present formalism, to analytically remove an infinite-series of leading volume corrections, is crucial to reliably extract the infinite-volume charge of the state.
298 - S. Ejiri , Y. Maezawa , N. Ukita 2009
We study the equation of state at finite temperature and density in two-flavor QCD with the RG-improved gluon action and the clover-improved Wilson quark action on a $ 16^3 times 4$ lattice. Along the lines of constant physics at $m_{rm PS}/m_{rm V} = 0.65$ and 0.80, we compute the second and forth derivatives of the grand canonical partition function with respect to the quark chemical potential $mu_q = (mu_u+mu_d)/2$ and the isospin chemical potential $mu_I = (mu_u-mu_d)/2$ at vanishing chemical potentials, and study the behaviors of thermodynamic quantities at finite $mu_q$ using these derivatives for the case $mu_I=0$. In particular, we study density fluctuations at none-zero temperature and density by calculating the quark number and isospin susceptibilities and their derivatives with respect to $mu_q$. To suppress statistical fluctuations, we also examine new techniques applicable at low densities. We find a large enhancement in the fluctuation of quark number when the density increased near the pseudo-critical temperature, suggesting a critical point at finite $mu_q$ terminating the first order transition line between hadronic and quark gluon plasma phases. This result agrees with the previous results using staggered-type quark actions qualitatively. Furthermore, we study heavy-quark free energies and Debye screening masses at finite density by measuring the first and second derivatives of these quantities for various color channels of heavy quark-quark and quark-anti-quark pairs. The results suggest that, to the leading order of $mu_q$, the interaction between two quarks becomes stronger at finite densities, while that between quark and anti-quark becomes weaker.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا