ﻻ يوجد ملخص باللغة العربية
In this comment, we address a number of erroneous discussions and conclusions presented in a recent preprint by the HALQCD collaboration, arXiv:1703.07210. In particular, we demonstrate that lattice QCD determinations of bound states at quark masses corresponding to a pion mass of $m_pi = 806$ MeV are robust, and that the phases shifts extracted by the NPLQCD collaboration for these systems pass all of the sanity checks introduced in arXiv:1703.07210.
On the basis of the Luschers finite volume formula, a simple test (consistency check or sanity check) is introduced and applied to inspect the recent claims of the existence of the nucleon-nucleon ($NN$) bound state(s) for heavy quark masses in latti
A sanity check rules out certain types of obviously false results, but does not catch every possible error. After reviewing such a sanity check for $NN$ bound states with the Luschers finite volume formula[1-3], we give further evidences for the oper
For the attractive interaction, the Luschers finite volume formula gives the phase shift at negative squared moment $k^2<0$ for the ground state in the finite volume, which corresponds to the analytic continuation of the phase shift at $k^2<0$ in the
Scattering observables can be computed in lattice field theory by measuring the volume dependence of energy levels of two particle states. The dominant volume dependence, proportional to inverse powers of the volume, is determined by the phase shifts
There exist two methods to study two-baryon systems in lattice QCD: the direct method which extracts eigenenergies from the plateaux of the temporal correlator and the HAL QCD method which extracts observables from the non-local potential associated