ﻻ يوجد ملخص باللغة العربية
A sanity check rules out certain types of obviously false results, but does not catch every possible error. After reviewing such a sanity check for $NN$ bound states with the Luschers finite volume formula[1-3], we give further evidences for the operator dependence of plateaux, a symptom of the fake plateau problem, against the claim in [4]. We then present our critical comments on [5] by NPLQCD: (i) Operator dependences of plateaux in NPL2013[6,7] exist with the $P$-values of 4--5%. (ii) The volume independence of plateaux in NPL2013 does not prove their correctness. (iii) Effective range expansion (ERE) fits in NPL2013 violate the physical pole condition. (iv) Ref.[5] is partly based on new data and analysis different from the original ones[6,7]. (v) A new ERE in Refs.[5,8] does not satisfy the Luschers finite volume formula. [1] T. Iritani et al., JHEP 10 (2016) 101. [2] S. Aoki et al., PoS (LATTICE2016) 109. [3] T. Iritani et al., 1703.0720. [4] T. Yamazaki et al., PoS (LATTICE2017) 108. [5] S.R. Beane et al., 1705.09239. [6] S.R. Beane et al., PRD87 (2013) 034506. [7] S.R. Beane et al., PRC88 (2013) 024003. [8] M.L. Wagman et al., 1706.06550.
In this comment, we address a number of erroneous discussions and conclusions presented in a recent preprint by the HALQCD collaboration, arXiv:1703.07210. In particular, we demonstrate that lattice QCD determinations of bound states at quark masses
On the basis of the Luschers finite volume formula, a simple test (consistency check or sanity check) is introduced and applied to inspect the recent claims of the existence of the nucleon-nucleon ($NN$) bound state(s) for heavy quark masses in latti
For the attractive interaction, the Luschers finite volume formula gives the phase shift at negative squared moment $k^2<0$ for the ground state in the finite volume, which corresponds to the analytic continuation of the phase shift at $k^2<0$ in the
I present derivation of Luschers finite size formula for the elastic $Npi$ and the $NN$ scattering system for several angular momenta from the relativistic quantum field theory.
There exist two methods to study two-baryon systems in lattice QCD: the direct method which extracts eigenenergies from the plateaux of the temporal correlator and the HAL QCD method which extracts observables from the non-local potential associated