ﻻ يوجد ملخص باللغة العربية
In $TmB_4$, localized electrons with a large magnetic moment interact with metallic electrons in boron-derived bands. We examine the nature of $TmB_4$ using full-relativistic ab-initio density functional theory calculations, approximate tight-binding Hamiltonian results, and the development of an effective Kondo-Ising model for this system. Features of the Fermi surface relating to the anisotropic conduction of charge are discussed. The observed magnetic moment $sim 6 , mu_B$ is argued to require a subtle crystal field effect in metallic systems, involving a flipped sign of the effective charges surrounding a Tm ion. The role of on-site quantum dynamics in the resulting Kondo-Ising type impurity model are highlighted. From this model, elimination of the conduction electrons will lead to spin-spin (RKKY-type) interaction of Ising character required to understand the observed fractional magnetization plateaus in $TmB_4$.
For the strongly correlated topological insulator SmB6 we discuss the influence of a 2x1 reconstruction of the (001) surface on the topological surface states. Depending on microscopic details, the reconstruction can be a weak or a strong perturbatio
Parafermions are emergent quasi-particles which generalize Majorana fermions and possess intriguing anyonic properties. The theoretical investigation of effective models hosting them is gaining considerable importance in view of present-day condensed
We analyze the ground-state energy, local spin correlation, impurity spin polarization, impurity-induced magnetization, and corresponding zero-field susceptibilities of the symmetric single-impurity Kondo model on a tight-binding chain with bandwidth
We derive an effective quasiparticle tight-binding model which is able to describe with high accuracy the low-energy electronic structure of Sr2RuO4 obtained by means of low temperature angle resolved photoemission spectroscopy. Such approach is appl
Half-metallicity in materials has been a subject of extensive research due to its potential for applications in spintronics. Ferromagnetic manganites have been seen as a good candidate, and aside from a small minority-spin pocket observed in La$_{2-2