ﻻ يوجد ملخص باللغة العربية
We analyze the ground-state energy, local spin correlation, impurity spin polarization, impurity-induced magnetization, and corresponding zero-field susceptibilities of the symmetric single-impurity Kondo model on a tight-binding chain with bandwidth $W=2{cal D}$ and coupling strength $J_{rm K}$. We compare perturbative results and variational upper bounds from Yosida, Gutzwiller, and first-order Lanczos wave functions to the numerically exact data obtained from the Density-Matrix Renormalization Group (DMRG) and from the Numerical Renormalization Group (NRG) methods. The Gutzwiller variational approach becomes exact in the strong-coupling limit and reproduces the ground-state properties from DMRG and NRG for large couplings. We calculate the impurity spin polarization and its susceptibility in the presence of magnetic fields that are applied globally/locally to the impurity spin. The Yosida wave function provides qualitatively correct results in the weak-coupling limit. In DMRG, chains with about $10^3$ sites are large enough to describe the susceptibilities down to $J_{rm K}/{cal D}approx 0.5$. For smaller Kondo couplings, only the NRG provides reliable results for a general host-electron density of states $rho_0(epsilon)$. To compare with results from Bethe Ansatz, we study the impurity-induced magnetization and zero-field susceptibility. For small Kondo couplings, the zero-field susceptibilities at zero temperature approach $chi_0(J_{rm K}ll {cal D})/(gmu_{rm B})^2approx exp[1/(rho_0(0)J_{rm K})]/(2C{cal D}sqrt{pi e rho_0(0)J_{rm K}})$, where $ln(C)$ is the regularized first inverse moment of the density of states. Using NRG, we determine the universal sub-leading corrections up to second order in $rho_0(0)J_{rm K}$.
We analyze the ground-state energy, magnetization, magnetic susceptibility, and Kondo screening cloud of the symmetric single-impurity Anderson model (SIAM) that is characterized by the band width $W$, the impurity interaction strength $U$, and the l
For the strongly correlated topological insulator SmB6 we discuss the influence of a 2x1 reconstruction of the (001) surface on the topological surface states. Depending on microscopic details, the reconstruction can be a weak or a strong perturbatio
In $TmB_4$, localized electrons with a large magnetic moment interact with metallic electrons in boron-derived bands. We examine the nature of $TmB_4$ using full-relativistic ab-initio density functional theory calculations, approximate tight-binding
Recent experimental advances enable the manipulation of quantum matter by exploiting the quantum nature of light. However, paradigmatic exactly solvable models, such as the Dicke, Rabi or Jaynes-Cummings models for quantum-optical systems, are scarce
The Kondo resonance at the Fermi level is well-established for the electronic structure of Ce (f1 electron) and Yb (f1 hole) based systems. In this work, we report complementary experimental and theoretical studies on the Kondo resonance in Pr-based