ﻻ يوجد ملخص باللغة العربية
Half-metallicity in materials has been a subject of extensive research due to its potential for applications in spintronics. Ferromagnetic manganites have been seen as a good candidate, and aside from a small minority-spin pocket observed in La$_{2-2x}$Sr$_{1+2x}$Mn$_{2}$O$_{7}$ $(x=0.38)$, transport measurements show that ferromagnetic manganites essentially behave like half metals. Here we develop robust tight-binding models to describe the electronic band structure of the majority as well as minority spin states of ferromagnetic, spin-canted antiferromagnetic, and fully antiferromagnetic bilayer manganites. Both the bilayer coupling between the MnO$_2$ planes and the mixing of the $|x^2 - y^2>$ and $|3z^2 - r^2>$ Mn 3d orbitals play an important role in the subtle behavior of the bilayer splitting. Effects of $k_z$ dispersion are included.
We present a systematic derivation of a minimal five-band tight-binding model for the description of the electronic structure of the recently discovered quasi one-dimensional superconductor K2Cr3As3. Taking as a reference the density-functional theor
We derive an effective quasiparticle tight-binding model which is able to describe with high accuracy the low-energy electronic structure of Sr2RuO4 obtained by means of low temperature angle resolved photoemission spectroscopy. Such approach is appl
For the strongly correlated topological insulator SmB6 we discuss the influence of a 2x1 reconstruction of the (001) surface on the topological surface states. Depending on microscopic details, the reconstruction can be a weak or a strong perturbatio
Using the Lanczos method in linear chains we study the double exchange model in the low concentration limit, including an antiferromagnetic super-exchange K. In the strong coupling limit we find that the ground state contains ferromagnetic polarons w
Artificial graphene consisting of honeycomb lattices other than the atomic layer of carbon has been shown to exhibit electronic properties similar to real graphene. Here, we reverse the argument to show that transport properties of real graphene can