ﻻ يوجد ملخص باللغة العربية
Van der Waals heterostructures have emerged as promising building blocks that offer access to new physics, novel device functionalities, and superior electrical and optoelectronic properties. Applications such as thermal management, photodetection, light emission, data communication, high-speed electronics and light harvesting require a thorough understanding of (nanoscale) heat flow. Here, using time-resolved photocurrent measurements we identify an efficient out-of-plane energy transfer channel, where charge carriers in graphene couple to hyperbolic phonon polaritons in the encapsulating layered material. This hyperbolic cooling is particularly efficient, giving picosecond cooling times, for hexagonal BN, where the high-momentum hyperbolic phonon polaritons enable efficient near-field energy transfer. We study this heat transfer mechanism through distinct control knobs to vary carrier density and lattice temperature, and find excellent agreement with theory without any adjustable parameters. These insights may lead to the ability to control heat flow in van der Waals heterostructures.
Two dimensional materials are usually envisioned as flat, truly 2D layers. However out-of-plane corrugations are inevitably present in these materials. In this manuscript, we show that graphene flakes encapsulated between insulating crystals (hBN, WS
Phonons (collective atomic vibrations in solids) are more effective in transporting heat than photons. This is the reason why the conduction mode of heat transport in nonmetals (mediated by phonons) is dominant compared to the radiation mode of heat
We present an approach to describing fluctuational electrodynamic (FED) interactions, particularly van der Waals (vdW) interactions as well as radiative heat transfer (RHT), between material bodies of vastly different length scales, allowing for goin
In this article we review recent work on van der Waals (vdW) systems in which at least one of the components has strong spin-orbit coupling. We focus on a selection of vdW heterostructures to exemplify the type of interesting electronic properties th
The van der Waals (vdW) interactions exist in reality universally and play an important role in physics. Here, we show the study on the mechanism of vdW interactions on phonon transport in atomic scale, which would boost developments in heat manageme