ﻻ يوجد ملخص باللغة العربية
Phonons (collective atomic vibrations in solids) are more effective in transporting heat than photons. This is the reason why the conduction mode of heat transport in nonmetals (mediated by phonons) is dominant compared to the radiation mode of heat transport (mediated by photons). However, since phonons are unable to traverse a vacuum gap (unlike photons) it is commonly believed that two bodies separated by a gap cannot exchange heat via phonons. Recently, a mechanism was proposed by which phonons can transport heat across a vacuum gap - through Van der Waals interaction between two bodies with gap less than wavelength of light. Such heat transfer mechanisms are highly relevant for heating (and cooling) of nanostructures; the heating of the flying heads in magnetic storage disks is a case in point. Here, the theoretical derivation for modeling phonon transmission is revisited and extended to the case of two bodies made of different materials separated by a vacuum gap. Magnitudes of phonon transmission, and hence the heat transfer, for commonly used materials in the micro and nano-electromechanical industry are calculated and compared with the calculation of conduction heat transfer through air for small gaps.
Van der Waals heterostructures have emerged as promising building blocks that offer access to new physics, novel device functionalities, and superior electrical and optoelectronic properties. Applications such as thermal management, photodetection, l
We present an approach to describing fluctuational electrodynamic (FED) interactions, particularly van der Waals (vdW) interactions as well as radiative heat transfer (RHT), between material bodies of vastly different length scales, allowing for goin
The van der Waals heterostructures are a fertile frontier for discovering emergent phenomena in condensed matter systems. They are constructed by stacking elements of a large library of two-dimensional materials, which couple together through van der
We investigate the character of the van der Waals (vdW) torque and force between two coplanar and dielectrically anisotropic topological insulator (TI) slabs separated by a vacuum gap in the non-retardation regime, where the optic axes of the slabs a
The effect of an implicit medium on dispersive interactions of particle pairs is discussed and simple expressions for the correction relative to vacuum are derived. We show that a single point Gauss quadrature leads to the intuitive result that the v