ﻻ يوجد ملخص باللغة العربية
The van der Waals (vdW) interactions exist in reality universally and play an important role in physics. Here, we show the study on the mechanism of vdW interactions on phonon transport in atomic scale, which would boost developments in heat management and energy conversion. Commonly, the vdW interactions are regarded as a hindrance in phonon transport. Here, we propose that the vdW confinement will enhance phonon transport. Through molecular dynamics simulations, it shows that the vdW confinement makes more than two-fold enhancement on thermal conductivity of both polyethylene single chain and graphene nanoribbon. The quantitative analyses of morphology, local vdW potential energy and dynamical properties are carried out to reveal the underlying physical mechanism. It is found that the confined vdW potential barriers reduce the atomic thermal displacement magnitudes, thus lead to less phonon scattering and facilitate thermal transport. Our study offers a new strategy to modulate the heat transport.
The van der Waals heterostructures are a fertile frontier for discovering emergent phenomena in condensed matter systems. They are constructed by stacking elements of a large library of two-dimensional materials, which couple together through van der
The interlayer coupling, which has a strong influence on the properties of van der Waals heterostructures, strongly depends on the interlayer distance. Although considerable theoretical interest has been demonstrated, experiments exploiting a variabl
The ability to confine light into tiny spatial dimensions is important for applications such as microscopy, sensing and nanoscale lasers. While plasmons offer an appealing avenue to confine light, Landau damping in metals imposes a trade-off between
Being used in optoelectronic devices as ultra-thin conductor-insulator junctions, detailed investigations are needed about how exactly h-BN and graphene hybridize. Here, we present a comprehensive ab initio study of hot carrier dynamics governed by e
Superconductor-ferromagnet (S-F) interfaces in two-dimensional (2D) heterostructures present a unique opportunity to study the interplay between superconductivity and ferromagnetism. The realization of such nanoscale heterostructures in van der Waals