ﻻ يوجد ملخص باللغة العربية
Does a closed quantum many-body system that is continually driven with a time-dependent Hamiltonian finally reach a steady state? This question has only recently been answered for driving protocols that are periodic in time, where the long time behavior of the local properties synchronize with the drive and can be described by an appropriate periodic ensemble. Here, we explore the consequences of breaking the time-periodic structure of the drive with additional aperiodic noise in a class of integrable systems. We show that the resulting unitary dynamics leads to new emergent steady states in at least two cases. While any typical realization of random noise causes eventual heating to an infinite temperature ensemble for all local properties in spite of the system being integrable, noise which is self-similar in time leads to an entirely different steady state, which we dub as geometric generalized Gibbs ensemble, that emerges only after an astronomically large time scale. To understand the approach to steady state, we study the temporal behavior of certain coarse-grained quantities in momentum space that fully determine the reduced density matrix for a subsystem with size much smaller than the total system. Such quantities provide a concise description for any drive protocol in integrable systems that are reducible to a free fermion representation.
Driven many-body quantum systems where some parameter in the Hamiltonian is varied quasiperiodically in time may exhibit nonequilibrium steady states that are qualitatively different from their periodically driven counterparts. Here we consider a pro
We study a class of periodically driven $d-$dimensional integrable models and show that after $n$ drive cycles with frequency $omega$, pure states with non-area-law entanglement entropy $S_n(l) sim l^{alpha(n,omega)}$ are generated, where $l$ is the
We study an integrable system that is reducible to free fermions by a Jordan-Wigner transformation which is subjected to a Fibonacci driving protocol based on two non-commuting Hamiltonians. In the high frequency limit $omega to infty$, we show that
We construct a set of exact, highly excited eigenstates for a nonintegrable spin-1/2 model in one dimension that is relevant to experiments on Rydberg atoms in the antiblockade regime. These states provide a new solvable example of quantum many-body
We develop a flow renormalization approach for periodically-driven quantum systems, which reveals prethermal dynamical regimes and associated timescales via direct correspondence between real time and flow time behavior. In this formalism, the dynami