ﻻ يوجد ملخص باللغة العربية
We construct a set of exact, highly excited eigenstates for a nonintegrable spin-1/2 model in one dimension that is relevant to experiments on Rydberg atoms in the antiblockade regime. These states provide a new solvable example of quantum many-body scars: their sub-volume-law entanglement and equal energy spacing allow for infinitely long-lived coherent oscillations of local observables following a suitable quantum quench. While previous works on scars have interpreted such oscillations in terms of the precession of an emergent macroscopic SU(2) spin, the present model evades this description due to a set of emergent kinetic constraints in the scarred eigenstates that are absent in the underlying Hamiltonian. We also analyze the set of initial states that give rise to periodic revivals, which persist as approximate revivals on a finite timescale when the underlying model is perturbed. Remarkably, a subset of these initial states coincides with the family of area-law entangled Rokhsar-Kivelson states shown by Lesanovsky to be exact ground states for a class of models relevant to experiments on Rydberg-blockaded atomic lattices.
A quantum many-body scar system usually contains a special non-thermal subspace (approximately) decoupled from the rest of the Hilbert space. In this work, we propose a general structure called deformed symmetric spaces for the decoupled subspaces ho
We find exponentially many exact quantum many-body scar states in a two-dimensional PXP model -- an effective model for a two-dimensional Rydberg atom array in the nearest-neighbor blockade regime. Such scar states are remarkably simple valence bond
We show that the magnetization of a single `qubit spin weakly coupled to an otherwise isolated disordered spin chain exhibits periodic revivals in the localized regime, and retains an imprint of its initial magnetization at infinite time. We demonstr
We investigate the spectral and transport properties of many-body quantum systems with conserved charges and kinetic constraints. Using random unitary circuits, we compute ensemble-averaged spectral form factors and linear-response correlation functi
Quantum many-body scar states are exceptional finite energy density eigenstates in an otherwise thermalizing system that do not satisfy the eigenstate thermalization hypothesis. We investigate the fate of exact many-body scar states under perturbatio