ﻻ يوجد ملخص باللغة العربية
We study an integrable system that is reducible to free fermions by a Jordan-Wigner transformation which is subjected to a Fibonacci driving protocol based on two non-commuting Hamiltonians. In the high frequency limit $omega to infty$, we show that the system reaches a non-equilibrium steady state, up to some small fluctuations which can be quantified. For each momentum $k$, the trajectory of the stroboscopically observed state lies between two concentric circles on the Bloch sphere; the circles represent the boundaries of the small fluctuations. The residual energy is found to oscillate in a quasiperiodic way between two values which correspond to the two Hamiltonians that define the Fibonacci protocol. These results can be understood in terms of an effective Hamiltonian which simulates the dynamics of the system in the high frequency limit.
Driven many-body quantum systems where some parameter in the Hamiltonian is varied quasiperiodically in time may exhibit nonequilibrium steady states that are qualitatively different from their periodically driven counterparts. Here we consider a pro
We study periodically driven bosonic scalar field theories in the infinite N limit. It is well-known that the free theory can undergo parametric resonance under monochromatic modulation of the mass term and thereby absorb energy indefinitely. Interac
Laser technology has developed and accelerated photo-induced nonequilibrium physics from both scientific and engineering viewpoints. The Floquet engineering, i.e., controlling material properties and functionalities by time-periodic drives, is a fore
Does a closed quantum many-body system that is continually driven with a time-dependent Hamiltonian finally reach a steady state? This question has only recently been answered for driving protocols that are periodic in time, where the long time behav
We study the survival of the current induced initially by applying a twist at the boundary of a chain of hard-core bosons (HCBs), subject to a periodic double $delta$-function kicks in the staggered on-site potential. We study the current flow and th