ﻻ يوجد ملخص باللغة العربية
Spin transfer torque (STT) driven by a charge current plays a key role in magnetization switching in heavy-metal/ferromagnetic-metal structures. The STT efficiency defined by the ratio between the effective field due to STT and the current density, is required to be improved to reduce energy compulsions in the STT-based spintronic devices. In this work, using the harmonic Hall measurement method, we experimentally studied the STT efficiency in platinum(Pt)/FM structures as a function of the Pt thickness. We found that the STT efficiency strongly depends on the Pt thickness and reaches a maximum value of 4.259 mT/($10^6$A/$cm^{2}$) for the 1.8-nm-thickness Pt sample. This result indicates that competition between spin Hall effect (SHE) and Rashba effect as well as spin diffusion process across the Pt layer determines the Pt thickness for the maximum STT efficiency. We demonstrated the role played by the spin diffusion besides the spin current generation mechanisms in improvement of the STT efficiency, which is helpful in designing STT-based devices.
Spin pumping by ferromagnetic resonance is one of the most common technique to determine spin hall angles, Edelstein lengths or spin diffusion lengths of a large variety of materials. In recent years, rising concerns have appeared regarding the inter
We report on the thin film resistivity of several platinum-group metals (Ru, Pd, Ir, Pt). Platinum-group thin films show comparable or lower resistivities than Cu for film thicknesses below about 5,nm due to a weaker thickness dependence of the resis
We investigate the absorption of a spin current at a ferromagnetic-metal/Pt-oxide interface by measuring current-induced ferromagnetic resonance. The spin absorption was characterized by the magnetic damping of the heterostructure. We show that the m
We report a strong enhancement of the efficacy of the spin Hall effect (SHE) of Pt for exerting anti-damping spin torque on an adjacent ferromagnetic layer by the insertion of $approx$ 0.5 nm layer of Hf between a Pt film and a thin, < 2 nm, Fe$_{60}
This paper has been withdrawn by the author due to a serious errors in the calculations.