ﻻ يوجد ملخص باللغة العربية
This work studies the magnetic activity of the late-type giant 37 Com. This star belongs to the group of weak G-band stars that present very strong carbon deficiency in their photospheres. The paper is a part of a global investigation into the properties and origin of magnetic fields in cool giants. We use spectropolarimetric data, which allows the simultaneous measurement of the longitudinal magnetic field $B_{l}$, line activity indicators (H$alpha$, Ca,{sc ii} IRT, S-index) and radial velocity of the star, and consequently perform a direct comparison of their time variability. Mean Stokes V profiles are extracted using the least squares deconvolution (LSD) method. One map of the surface magnetic field of the star is reconstructed via the Zeeman Doppler imaging (ZDI) inversion technique. A periodogram analysis is performed on our dataset and it reveals a rotation period of 111 days. We interpret this period to be the rotation period of 37 Com. The reconstructed magnetic map reveals that the structure of the surface magnetic field is complex and features a significant toroidal component. The time variability of the line activity indicators, radial velocity and magnetic field $B_{l}$ indicates a possible evolution of the surface magnetic structures in the period from 2008 to 2011. For completeness of our study, we use customized stellar evolutionary models suited to a weak G-band star. Synthetic spectra are also calculated to confirm the peculiar abundance of 37 Com. We deduce that 37 Com is a 6.5~$M_{odot}$ weak G-band star located in the Hertzsprung gap, whose magnetic activity is probably due to dynamo action.
We present a three-dimensional simulation of the corona of an FK Com-type rapidly rotating G giant using a magnetohydrodynamic model that was originally developed for the solar corona in order to capture the more realistic, non-potential coronal stru
We investigate the magnetic field at the surface of 48 red giants selected as promising for detection of Stokes V Zeeman signatures in their spectral lines. We use the spectropolarimeters Narval and ESPaDOnS to detect circular polarization within the
Analyses of Galactic late O dwarfs (O8-O9.5V) raised the `weak wind problem: spectroscopic mass loss rates ($dot{M}$) are up to two orders of magnitude lower than the theoretical values. We investigated the stellar and wind properties of Galactic lat
We analyse medium-resolution spectra (Rsim 18000) of 19 late type dwarfs in order to determine vsini-s using synthetic rather than observational template spectra. For this purpose observational data around 2.2 $mu$m of stars with spectral classes fro
High spectral resolution and high signal-to-noise ratio optical spectra of red giants in the globular cluster Omega Centauri are analysed for stellar parameters and chemical abundances of 15 elements including helium by either line equivalent widths