ﻻ يوجد ملخص باللغة العربية
We analyse medium-resolution spectra (Rsim 18000) of 19 late type dwarfs in order to determine vsini-s using synthetic rather than observational template spectra. For this purpose observational data around 2.2 $mu$m of stars with spectral classes from G8V to M9.5V were modelled. We find that the Na I (2.2062 and 2.2090 $mu$m) and $^{12}$CO 2-0 band features are modelled well enough to use for vsini determination without the need for a suitable observational template spectra. Within the limit of the resolution of our spectra, we use synthetic spectra templates to derive vsini values consistent with those derived in the optical regime using observed templates. We quantify the errors in our vsini determination due to incorrect choice of model parameters Teff, log $g$, $v_{rm micro}$, [Fe/H] or FWHM and show that they are typically less than 10 per cent. We note that the spectral resolution of our data(sim 16 km/s) limited this study to relatively fast rotators and that resolutions of 60000 will required to access most late-type dwarfs.
Older GCE models predict [K/Fe] ratios as much as 1 dex lower than those inferred from stellar observations. Abundances of potassium are mainly based on analyses of the 7698 $AA$ resonance line, and the discrepancy between models and observations is
We present a mini-survey of Galactic B[e] stars mainly undertaken with the Large Binocular Telescope (LBT). B[e] stars show morphological features with hydrogen emission lines and an infrared excess, attributed to warm circumstellar dust. In general,
Aluminium plays a key role in studies of the chemical enrichment of the Galaxy and of globular clusters. However, strong deviations from LTE (non-LTE) are known to significantly affect the inferred abundances in giant and metal-poor stars. We present
We used the Project 1640 near-infrared coronagraph and integral field spectrograph to observe 19 young solar type stars. Five of these stars are known binary stars and we detected the late-type secondaries and were able to measure their JH spectra wi
We examine the consequences of, and apply, the formalism developed in Terquem (2021) for calculating the rate $D_R$ at which energy is exchanged between fast tides and convection. In this previous work, $D_R$ (which is proportional to the gradient of