ﻻ يوجد ملخص باللغة العربية
Analyses of Galactic late O dwarfs (O8-O9.5V) raised the `weak wind problem: spectroscopic mass loss rates ($dot{M}$) are up to two orders of magnitude lower than the theoretical values. We investigated the stellar and wind properties of Galactic late O giants (O8-O9.5III). We performed a spectroscopic analysis of nine O8-O9.5III stars in the ultraviolet (UV) and optical regions using the model atmosphere code CMFGEN. From the UV region, we found $dot{M}$ $sim$ $10^{-8}-10^{-9}$ $mathrm{M_odot}$ $mathrm{yr^{-1}}$ overall. This is lower by $sim 0.9 - 2.3$ dex than the predicted values based on the (global) conservation of energy in the wind. The mass-loss rates predicted from first principles, based on the moving reversing layer theory, agree better with our findings, but it fails to match the spectroscopic $dot{M}$ for the most luminous OB stars. The region of $log(L_star/L_odot) sim 5.2$ is critical for both sets of predictions in comparison with the spectroscopic mass-loss rates. CMFGEN models with the predicted $dot{M}$ (the former one) fail to reproduce the UV wind lines for all the stars of our sample. We reproduce the observed H$alpha$ profiles of four objects with our $dot{M}$ derived from the UV. Hence, low $dot{M}$ values (weak winds) are favored to fit the observations (UV + optical), but discrepancies between the UV and H$alpha$ diagnostics remain for some objects. Our results indicate weak winds beyond the O8-9.5V class, since the region of $log(L_star/L_odot) sim 5.2$ is indeed critical to the weak wind phenomenon. Since O8-O9.5III stars are more evolved than O8-9.5V, evolutionary effects do not seem to play a role in the onset of the weak wind phenomenon. These findings support that the $dot{M}$ (for low luminosity O stars) in use in the majority of modern stellar evolution codes must be severely overestimated up to the end of the H-burning phase.
We have investigated the stellar and wind properties of a sample of five late-type O dwarfs in order to address the weak wind problem. A grid of TLUSTY models was used to obtain the stellar parameters, and the wind parameters were determined by using
Context. Radiation-driven mass loss is key to our understanding of massive-star evolution. However, for low-luminosity O-type stars there are big discrepancies between theoretically predicted and empirically derived mass-loss rates (called the weak-w
Aims: We aim at measuring mass-loss rates and the luminosities of a statistically large sample of Galactic bulge stars at several galactocentric radii. The sensitivity of previous infrared surveys of the bulge has been rather limited, thus fundamenta
With new data from the Galactic O-Star Spectroscopic Survey, we confirm and expand the ONn category of late-O, nitrogen-enriched (N), rapidly rotating (n) giants. In particular, we have discovered two clones (HD 102415 and HD 117490) of one of the mo
This is the third installment of GOSSS, a massive spectroscopic survey of Galactic O stars, based on new homogeneous, high signal-to-noise ratio, R~2500 digital observations selected from the Galactic O-Star Catalog (GOSC). In this paper we present 1