ترغب بنشر مسار تعليمي؟ اضغط هنا

Probing the weak wind phenomenon in Galactic O-type giants

105   0   0.0 ( 0 )
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Analyses of Galactic late O dwarfs (O8-O9.5V) raised the `weak wind problem: spectroscopic mass loss rates ($dot{M}$) are up to two orders of magnitude lower than the theoretical values. We investigated the stellar and wind properties of Galactic late O giants (O8-O9.5III). We performed a spectroscopic analysis of nine O8-O9.5III stars in the ultraviolet (UV) and optical regions using the model atmosphere code CMFGEN. From the UV region, we found $dot{M}$ $sim$ $10^{-8}-10^{-9}$ $mathrm{M_odot}$ $mathrm{yr^{-1}}$ overall. This is lower by $sim 0.9 - 2.3$ dex than the predicted values based on the (global) conservation of energy in the wind. The mass-loss rates predicted from first principles, based on the moving reversing layer theory, agree better with our findings, but it fails to match the spectroscopic $dot{M}$ for the most luminous OB stars. The region of $log(L_star/L_odot) sim 5.2$ is critical for both sets of predictions in comparison with the spectroscopic mass-loss rates. CMFGEN models with the predicted $dot{M}$ (the former one) fail to reproduce the UV wind lines for all the stars of our sample. We reproduce the observed H$alpha$ profiles of four objects with our $dot{M}$ derived from the UV. Hence, low $dot{M}$ values (weak winds) are favored to fit the observations (UV + optical), but discrepancies between the UV and H$alpha$ diagnostics remain for some objects. Our results indicate weak winds beyond the O8-9.5V class, since the region of $log(L_star/L_odot) sim 5.2$ is indeed critical to the weak wind phenomenon. Since O8-O9.5III stars are more evolved than O8-9.5V, evolutionary effects do not seem to play a role in the onset of the weak wind phenomenon. These findings support that the $dot{M}$ (for low luminosity O stars) in use in the majority of modern stellar evolution codes must be severely overestimated up to the end of the H-burning phase.



قيم البحث

اقرأ أيضاً

We have investigated the stellar and wind properties of a sample of five late-type O dwarfs in order to address the weak wind problem. A grid of TLUSTY models was used to obtain the stellar parameters, and the wind parameters were determined by using the CMFGEN code. We found that the spectra have mainly a photospheric origin. A weak wind signature is seen in CIV 1549, from where mass-loss rates consistent with previous CMFGEN results regarding O8-9V stars were obtained. A discrepancy of roughly 2 orders of magnitude is found between these mass-loss rates and the values predicted by theory (Mdot(Vink)), confirming a breakdown or a steepening of the modified wind momentum-luminosity relation at log L/Lsun < 5.2. We have estimated the carbon abundance for the stars of our sample and concluded that its uncertainty cannot cause the weak wind problem. Upper limits on Mdot were established for all objects using lines of different ions, namely, PV 1118,28, CIII 1176, NV 1239,43, Si IV 1394,03, and NIV 1718. All the values obtained are also in disagreement with theoretical predictions, bringing support to the reality of weak winds. Together with CIV 1549, the use of NV 1239,43 results in the lowest mass-loss rates: the upper limits indicate that Mdot must be less than about -1.0 dex Mdot(Vink). Regarding the other transitions, the upper limits still point to low rates: Mdot must be less than about $(-0.5 pm 0.2)$ dex Mdot(Vink). We have studied the behavior of the Halpha line with different mass-loss rates. We have also explored ways to fit the observed spectra with Mdot(Vink). By using large amounts of X-rays, we verified that few wind emissions take place, as in weak winds. However, unrealistic X-rays luminosities had to be used (log Lx/Lbol > -3.5) (abridged).
Context. Radiation-driven mass loss is key to our understanding of massive-star evolution. However, for low-luminosity O-type stars there are big discrepancies between theoretically predicted and empirically derived mass-loss rates (called the weak-w ind problem). Aims. We compute radiation-line-driven wind models of a typical weak-wind star to determine its temperature structure and the corresponding impact on ultra-violet (UV) line formation. Methods. We carried out hydrodynamic simulations of the line-deshadowing instability (LDI) for a weak-wind star in the Galaxy. Subsequently, we used this LDI model as input in a short-characteristics radiative transfer code to compute synthetic UV line profiles. Results. We find that the line-driven weak wind is significantly shock heated to high temperatures and is unable to cool down effciently. This results in a complex temperature structure where more than half of the wind volume has temperatures significantly higher than the stellar effective temperature. Therefore, a substantial portion of the weak wind will be more ionised, resulting in a reduction of the UV line opacity and therefore in weaker line profiles for a given mass-loss rate. Quantifying this, we find that weak-wind mass-loss rates derived from unsaturated UV lines could be underestimated by a factor of between 10 and 100 if the high-temperature gas is not properly taken into account in the spectroscopic analysis. This offers a tentative basic explanation for the weak-wind problem: line-driven weak winds are not really weaker than theoretically expected, but rather a large portion of their wind volume is much hotter than the stellar effective temperature.
Aims: We aim at measuring mass-loss rates and the luminosities of a statistically large sample of Galactic bulge stars at several galactocentric radii. The sensitivity of previous infrared surveys of the bulge has been rather limited, thus fundamenta l questions for late stellar evolution, such as the stage at which substantial mass-loss begins on the red giant branch and its dependence on fundamental stellar properties, remain unanswered. We aim at providing evidence and answers to these questions. Methods: To this end, we observed seven 15 times 15 arcmin^2 fields in the nuclear bulge and its vicinity with unprecedented sensitivity using the IRAC and MIPS imaging instruments on-board the Spitzer Space Telescope. In each of the fields, tens of thousands of point sources were detected. Results: In the first paper based on this data set, we present the observations, data reduction, the final catalogue of sources, and a detailed comparison to previous mid-IR surveys of the Galactic bulge, as well as to theoretical isochrones. We find in general good agreement with other surveys and the isochrones, supporting the high quality of our catalogue.
122 - Nolan R. Walborn 2011
With new data from the Galactic O-Star Spectroscopic Survey, we confirm and expand the ONn category of late-O, nitrogen-enriched (N), rapidly rotating (n) giants. In particular, we have discovered two clones (HD 102415 and HD 117490) of one of the mo st rapidly rotating O stars previously known (HD 191423, Howarths Star). We compare the locations of these objects in the theoretical HR Diagram to those of slowly rotating ON dwarfs and supergiants. All ON giants known to date are rapid rotators, whereas no ON dwarf or supergiant is; but all ON stars are small fractions of their respective spectral-type/luminosity-class/rotational subcategories. The ONn giants, displaying both substantial processed material and high rotation at an intermediate evolutionary stage, may provide significant information about the development of those properties. They may have preserved high initial rotational velocities or been spun up by TAMS core contraction; but alternatively and perhaps more likely, they may be products of binary mass transfer. At least some of them are also runaway stars.
This is the third installment of GOSSS, a massive spectroscopic survey of Galactic O stars, based on new homogeneous, high signal-to-noise ratio, R~2500 digital observations selected from the Galactic O-Star Catalog (GOSC). In this paper we present 1 42 additional stellar systems with O stars from both hemispheres, bringing the total of O-type systems published within the project to 590. Among the new objects there are 20 new O stars. We also identify 11 new double-lined spectroscopic binaries (SB2s), of which 6 are of O+O type and 5 of O+B type, and an additional new tripled-lined spectroscopic binary (SB3) of O+O+B type. We also revise some of the previous GOSSS classifications, present some egregious examples of stars erroneously classified as O-type in the past, introduce the use of luminosity class IV at spectral types O4-O5.5, and adapt the classification scheme to the work of Arias et al. (2016).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا