ﻻ يوجد ملخص باللغة العربية
This paper proposes a polar code construction scheme that reduces constituent-code supplemented decoding latency. Constituent codes are the sub-codewords with specific patterns. They are used to accelerate the successive cancellation decoding process of polar code without any performance degradation. We modify the traditional construction approach to yield increased number of desirable constituent codes that speeds the decoding process. For (n,k) polar code, instead of directly setting the k best and (n-k) worst bits to the information bits and frozen bits, respectively, we swap the locations of some information and frozen bits carefully according to the qualities of their equivalent channels. We conducted the simulation of 1024 and 2048 bits length polar codes with multiple rates and analyzed the decoding latency for various length codes. The numerical results show that the proposed construction scheme generally is able to achieve at least around 20% latency deduction with an negligible loss in gain with carefully selected optimization threshold.
This work analyzes the latency of the simplified successive cancellation (SSC) decoding scheme for polar codes proposed by Alamdar-Yazdi and Kschischang. It is shown that, unlike conventional successive cancellation decoding, where latency is linear
This paper characterizes the latency of the simplified successive-cancellation (SSC) decoding scheme for polar codes under hardware resource constraints. In particular, when the number of processing elements $P$ that can perform SSC decoding operatio
Gaussian approximation (GA) is widely used to construct polar codes. However when the code length is long, the subchannel selection inaccuracy due to the calculation error of conventional approximate GA (AGA), which uses a two-segment approximation f
This paper proposes the architecture of partial sum generator for constituent codes based polar code decoder. Constituent codes based polar code decoder has the advantage of low latency. However, no purposefully designed partial sum generator design
A modification of Koetter-Kschischang codes for random networks is presented (these codes were also studied by Wang et al. in the context of authentication problems). The new codes have higher information rate, while maintaining the same error-correc