ﻻ يوجد ملخص باللغة العربية
This paper characterizes the latency of the simplified successive-cancellation (SSC) decoding scheme for polar codes under hardware resource constraints. In particular, when the number of processing elements $P$ that can perform SSC decoding operations in parallel is limited, as is the case in practice, the latency of SSC decoding is $Oleft(N^{1-1/mu}+frac{N}{P}log_2log_2frac{N}{P}right)$, where $N$ is the block length of the code and $mu$ is the scaling exponent of the channel. Three direct consequences of this bound are presented. First, in a fully-parallel implementation where $P=frac{N}{2}$, the latency of SSC decoding is $Oleft(N^{1-1/mu}right)$, which is sublinear in the block length. This recovers a result from our earlier work. Second, in a fully-serial implementation where $P=1$, the latency of SSC decoding scales as $Oleft(Nlog_2log_2 Nright)$. The multiplicative constant is also calculated: we show that the latency of SSC decoding when $P=1$ is given by $left(2+o(1)right) Nlog_2log_2 N$. Third, in a semi-parallel implementation, the smallest $P$ that gives the same latency as that of the fully-parallel implementation is $P=N^{1/mu}$. The tightness of our bound on SSC decoding latency and the applicability of the foregoing results is validated through extensive simulations.
This work analyzes the latency of the simplified successive cancellation (SSC) decoding scheme for polar codes proposed by Alamdar-Yazdi and Kschischang. It is shown that, unlike conventional successive cancellation decoding, where latency is linear
Polar codes are a class of channel capacity achieving codes that has been selected for the next generation of wireless communication standards. Successive-cancellation (SC) is the first proposed decoding algorithm, suffering from mediocre error-corre
A deep-learning-aided successive-cancellation list (DL-SCL) decoding algorithm for polar codes is introduced with deep-learning-aided successive-cancellation (DL-SC) decoding being a specific case of it. The DL-SCL decoder works by allowing additiona
Fast SC decoding overcomes the latency caused by the serial nature of the SC decoding by identifying new nodes in the upper levels of the SC decoding tree and implementing their fast parallel decoders. In this work, we first present a novel sequence
The interest in polar codes has been increasing significantly since their adoption for use in the 5$^{rm th}$ generation wireless systems standard. Successive cancellation (SC) decoding algorithm has low implementation complexity, but yields mediocre