ﻻ يوجد ملخص باللغة العربية
Gaussian approximation (GA) is widely used to construct polar codes. However when the code length is long, the subchannel selection inaccuracy due to the calculation error of conventional approximate GA (AGA), which uses a two-segment approximation function, results in a catastrophic performance loss. In this paper, new principles to design the GA approximation functions for polar codes are proposed. First, we introduce the concepts of polarization violation set (PVS) and polarization reversal set (PRS) to explain the essential reasons that the conventional AGA scheme cannot work well for the long-length polar code construction. In fact, these two sets will lead to the rank error of subsequent subchannels, which means the orders of subchannels are misaligned, which is a severe problem for polar code construction. Second, we propose a new metric, named cumulative-logarithmic error (CLE), to quantitatively evaluate the remainder approximation error of AGA in logarithm. We derive the upper bound of CLE to simplify its calculation. Finally, guided by PVS, PRS and CLE bound analysis, we propose new construction rules based on a multi-segment approximation function, which obviously improve the calculation accuracy of AGA so as to ensure the excellent performance of polar codes especially for the long code lengths. Numerical and simulation results indicate that the proposed AGA schemes are critical to construct the high-performance polar codes.
This paper proposes a polar code construction scheme that reduces constituent-code supplemented decoding latency. Constituent codes are the sub-codewords with specific patterns. They are used to accelerate the successive cancellation decoding process
A modification of Koetter-Kschischang codes for random networks is presented (these codes were also studied by Wang et al. in the context of authentication problems). The new codes have higher information rate, while maintaining the same error-correc
Polar codes are the first class of constructive channel codes achieving the symmetric capacity of the binary-input discrete memoryless channels. But the corresponding code length is limited to the power of two. In this paper, we establish a systemati
We investigate variable-length feedback (VLF) codes for the Gaussian point-to-point channel under maximal power, average error probability, and average decoding time constraints. Our proposed strategy chooses $K < infty$ decoding times $n_1, n_2, dot
This paper presents an efficient hardware design approach for list successive cancellation (LSC) decoding of polar codes. By applying path-overlapping scheme, the l instances of (l > 1) successive cancellation (SC) decoder for LSC with list size l ca