ﻻ يوجد ملخص باللغة العربية
A wide variety of astrophysical and cosmological sources are expected to contribute to a stochastic gravitational-wave background. Following the observations of GW150914 and GW151226, the rate and mass of coalescing binary black holes appear to be greater than many previous expectations. As a result, the stochastic background from unresolved compact binary coalescences is expected to be particularly loud. We perform a search for the isotropic stochastic gravitational-wave background using data from Advanced LIGOs first observing run. The data display no evidence of a stochastic gravitational-wave signal. We constrain the dimensionless energy density of gravitational waves to be $Omega_0<1.7times 10^{-7}$ with 95% confidence, assuming a flat energy density spectrum in the most sensitive part of the LIGO band (20-86 Hz). This is a factor of ~33 times more sensitive than previous measurements. We also constrain arbitrary power-law spectra. Finally, we investigate the implications of this search for the background of binary black holes using an astrophysical model for the background.
We employ gravitational-wave radiometry to map the gravitational waves stochastic background expected from a variety of contributing mechanisms and test the assumption of isotropy using data from Advanced LIGOs first observing run. We also search for
We report results of a search for an isotropic gravitational-wave background (GWB) using data from Advanced LIGOs and Advanced Virgos third observing run (O3) combined with upper limits from the earlier O1 and O2 runs. Unlike in previous observing ru
Gravitational waves from a variety of sources are predicted to superpose to create a stochastic background. This background is expected to contain unique information from throughout the history of the universe that is unavailable through standard ele
The stochastic gravitational-wave background is a superposition of sources that are either too weak or too numerous to detect individually. In this study we present the results from a cross-correlation analysis on data from Advanced LIGOs second obse
We perform an unmodeled search for persistent, directional gravitational wave (GW) sources using data from the first and second observing runs of Advanced LIGO. We do not find evidence for any GW signals. We place limits on the broadband GW flux emit